Self-Supervised Learning Framework With Under-Balanced Loss Optimization for Point of Care MRI Image Reconstruction in 6G-Driven Edge Networks

IF 0.5 Q4 TELECOMMUNICATIONS
Yang Liu
{"title":"Self-Supervised Learning Framework With Under-Balanced Loss Optimization for Point of Care MRI Image Reconstruction in 6G-Driven Edge Networks","authors":"Yang Liu","doi":"10.1002/itl2.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Self-supervised learning frameworks in the 6G-driven edge networks provide powerful instant MRI image diagnostic capabilities for the process of point of care. Although many deep learning self-supervised frameworks are used to train-related models to improve magnetic resonance imaging (MRI) image reconstruction, there is still room for improvement in model training convergence acceleration and MRI image reconstruction quality. To address the above issues, first, this article proposes a self-supervised learning framework, which combines the real-time computing power of the edge network driven by 6G networks to accelerate the training convergence of the MRI image reconstruction model and improve the quality of the reconstructed image. Second, the proposed framework innovatively introduces an under-balanced loss optimization structure and applies heterogeneous loss functions at different positions of the model. Finally, this article proposes AttentionFISTA-Net, which integrates the convolutional attention module into FISTA-Net to enhance the MRI image reconstruction effect. Experimental results on the IXI dataset compared with the traditional self-supervised network show that the proposed model performs better in the under-sampled dataset with acceleration rates of 4 and 8, respectively. The peak signal-to-noise ratio (PSNR) metric improves <span></span><math>\n <semantics>\n <mrow>\n <mn>0.021</mn>\n </mrow>\n <annotation>$$ 0.021 $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>0.61</mn>\n </mrow>\n <annotation>$$ 0.61 $$</annotation>\n </semantics></math> respectively, and the structure similarity index measure (SSIM) metric improves <span></span><math>\n <semantics>\n <mrow>\n <mn>0.5</mn>\n <mo>*</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {0.5}^{\\ast }{10}^{-3} $$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mn>8.2</mn>\n <mo>*</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {8.2}^{\\ast }{10}^{-3} $$</annotation>\n </semantics></math>, respectively.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supervised learning frameworks in the 6G-driven edge networks provide powerful instant MRI image diagnostic capabilities for the process of point of care. Although many deep learning self-supervised frameworks are used to train-related models to improve magnetic resonance imaging (MRI) image reconstruction, there is still room for improvement in model training convergence acceleration and MRI image reconstruction quality. To address the above issues, first, this article proposes a self-supervised learning framework, which combines the real-time computing power of the edge network driven by 6G networks to accelerate the training convergence of the MRI image reconstruction model and improve the quality of the reconstructed image. Second, the proposed framework innovatively introduces an under-balanced loss optimization structure and applies heterogeneous loss functions at different positions of the model. Finally, this article proposes AttentionFISTA-Net, which integrates the convolutional attention module into FISTA-Net to enhance the MRI image reconstruction effect. Experimental results on the IXI dataset compared with the traditional self-supervised network show that the proposed model performs better in the under-sampled dataset with acceleration rates of 4 and 8, respectively. The peak signal-to-noise ratio (PSNR) metric improves 0.021 $$ 0.021 $$ and 0.61 $$ 0.61 $$ respectively, and the structure similarity index measure (SSIM) metric improves 0.5 * 10 3 $$ {0.5}^{\ast }{10}^{-3} $$ and 8.2 * 10 3 $$ {8.2}^{\ast }{10}^{-3} $$ , respectively.

基于欠平衡损失优化的自监督学习框架在6g驱动边缘网络中用于点护理MRI图像重建
6g驱动的边缘网络中的自我监督学习框架为护理点的过程提供了强大的即时MRI图像诊断能力。尽管许多深度学习自监督框架被用于训练相关模型以提高磁共振成像(MRI)图像重建,但在模型训练收敛加速和MRI图像重建质量方面仍有改进的空间。针对上述问题,首先,本文提出了一种自监督学习框架,结合6G网络驱动的边缘网络的实时计算能力,加速MRI图像重建模型的训练收敛,提高重建图像的质量。其次,该框架创新性地引入欠平衡损失优化结构,并在模型的不同位置应用异构损失函数。最后,本文提出了AttentionFISTA-Net,将卷积注意模块集成到FISTA-Net中,以增强MRI图像重建效果。在IXI数据集上的实验结果与传统自监督网络的对比表明,该模型在欠采样数据集上的性能更好,加速率分别为4和8。峰值信噪比(PSNR)指标分别提高0.021 $$ 0.021 $$和0.61 $$ 0.61 $$;结构相似指数度量(SSIM)度量提高了0.5 * 10−3 $$ {0.5}^{\ast }{10}^{-3} $$和8.2 * 10−3分别为$$ {8.2}^{\ast }{10}^{-3} $$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信