Evolutionary Intelligent Large Model-Driven Heterogeneous Traffic Analysis in Wireless Communication Networks

IF 0.9 Q4 TELECOMMUNICATIONS
Huanhuan Liu, Rui Sun, Yu Ji, Mengzhu Lu
{"title":"Evolutionary Intelligent Large Model-Driven Heterogeneous Traffic Analysis in Wireless Communication Networks","authors":"Huanhuan Liu,&nbsp;Rui Sun,&nbsp;Yu Ji,&nbsp;Mengzhu Lu","doi":"10.1002/itl2.70024","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Traditional traffic analysis methods, which often assume homogeneous patterns, struggle to capture the intricate relationships between different traffic types and their temporal dependencies. This limitation necessitates advanced approaches that can effectively handle the multi-dimensional nature of modern network traffic while maintaining computational efficiency. This paper proposes evolutionary large model gray wolf optimization (GWO) for heterogeneous traffic networks (ELGWO-HTN), a novel framework that combines evolutionary computation with intelligent large models for heterogeneous traffic analysis. The approach integrates enhanced GWO with adaptive parameter tuning mechanisms, enabling efficient navigation of high-dimensional parameter spaces. Through experimentation in real wireless network environments, ELGWO-HTN demonstrates superior performance across multiple metrics, achieving 94.2% prediction accuracy for video streaming and 93.5% for data traffic, while reducing training time by 41.7% compared to baseline methods.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional traffic analysis methods, which often assume homogeneous patterns, struggle to capture the intricate relationships between different traffic types and their temporal dependencies. This limitation necessitates advanced approaches that can effectively handle the multi-dimensional nature of modern network traffic while maintaining computational efficiency. This paper proposes evolutionary large model gray wolf optimization (GWO) for heterogeneous traffic networks (ELGWO-HTN), a novel framework that combines evolutionary computation with intelligent large models for heterogeneous traffic analysis. The approach integrates enhanced GWO with adaptive parameter tuning mechanisms, enabling efficient navigation of high-dimensional parameter spaces. Through experimentation in real wireless network environments, ELGWO-HTN demonstrates superior performance across multiple metrics, achieving 94.2% prediction accuracy for video streaming and 93.5% for data traffic, while reducing training time by 41.7% compared to baseline methods.

演化智能大模型驱动的无线通信网络异构业务分析
传统的流量分析方法通常采用同质模式,难以捕捉不同流量类型及其时间依赖性之间的复杂关系。这种限制需要先进的方法,能够有效地处理现代网络流量的多维特性,同时保持计算效率。本文提出了异构交通网络演化大模型灰狼优化算法(ELGWO-HTN),这是一种将演化计算与智能大模型相结合的异构交通分析新框架。该方法将增强的GWO与自适应参数调整机制相结合,实现了高维参数空间的有效导航。通过在真实无线网络环境中的实验,ELGWO-HTN在多个指标上表现出卓越的性能,对视频流和数据流量的预测准确率分别达到94.2%和93.5%,同时与基线方法相比,训练时间减少了41.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信