{"title":"Enhancing Precision and Personalization in Surgical Management of Osteogenesis Imperfecta Through Advanced Technologies: A Case Study","authors":"Yary Volpe , Simone Lazzeri","doi":"10.1016/j.irbm.2025.100900","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective</h3><div>The paper aims to demonstrate the integration of advanced technologies, including computed tomography (CT), computer-aided design (CAD), and additive manufacturing, for precise surgical planning and personalized solutions in the management of Osteogenesis Imperfecta (OI). The main research question is to determine how these technologies can be utilized to achieve successful surgical outcomes in severe cases of OI, such as the one presented in this study.</div></div><div><h3>Methods</h3><div>The study involved an 11-year-old child with OI who suffered from a closed right diaphyseal femur fracture and severe lower extremity abnormalities. Virtual and physical planning procedures were carried out using CAD software based on patient-specific CT models. The length of the proximal and distal segments, cutting planes, and osteotomies were precisely defined to achieve the desired surgical corrections. Additionally, 3D models of the bones and bony segments were manufactured using additive manufacturing to physically recreate the surgical procedure.</div></div><div><h3>Results</h3><div>The surgical treatment involved the correction of the right femur fracture and the left tibia and fibula in the first procedure, followed by the correction of the remaining segments in a second procedure. The Fassier-Duval telescopic intramedullary nail was used to stabilize the fracture and the osteotomy sites. The entire treatment course, from the first surgery to achieving partial weight-bearing, spanned approximately 15 weeks, including the two surgical procedures and staged rehabilitation. Post-surgery, the patient showed significant functional improvement, including the ability to stand and walk with assistance.</div></div><div><h3>Conclusion</h3><div>The integration of advanced technologies in surgical planning for OI patients has shown promising results, leading to improved patient outcomes and reduced complications. This approach has the potential to enhance the accuracy of preoperative planning and provide personalized and precise solutions, ultimately elevating the overall quality of healthcare for OI patients.</div></div>","PeriodicalId":14605,"journal":{"name":"Irbm","volume":"46 4","pages":"Article 100900"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irbm","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1959031825000259","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Objective
The paper aims to demonstrate the integration of advanced technologies, including computed tomography (CT), computer-aided design (CAD), and additive manufacturing, for precise surgical planning and personalized solutions in the management of Osteogenesis Imperfecta (OI). The main research question is to determine how these technologies can be utilized to achieve successful surgical outcomes in severe cases of OI, such as the one presented in this study.
Methods
The study involved an 11-year-old child with OI who suffered from a closed right diaphyseal femur fracture and severe lower extremity abnormalities. Virtual and physical planning procedures were carried out using CAD software based on patient-specific CT models. The length of the proximal and distal segments, cutting planes, and osteotomies were precisely defined to achieve the desired surgical corrections. Additionally, 3D models of the bones and bony segments were manufactured using additive manufacturing to physically recreate the surgical procedure.
Results
The surgical treatment involved the correction of the right femur fracture and the left tibia and fibula in the first procedure, followed by the correction of the remaining segments in a second procedure. The Fassier-Duval telescopic intramedullary nail was used to stabilize the fracture and the osteotomy sites. The entire treatment course, from the first surgery to achieving partial weight-bearing, spanned approximately 15 weeks, including the two surgical procedures and staged rehabilitation. Post-surgery, the patient showed significant functional improvement, including the ability to stand and walk with assistance.
Conclusion
The integration of advanced technologies in surgical planning for OI patients has shown promising results, leading to improved patient outcomes and reduced complications. This approach has the potential to enhance the accuracy of preoperative planning and provide personalized and precise solutions, ultimately elevating the overall quality of healthcare for OI patients.
期刊介绍:
IRBM is the journal of the AGBM (Alliance for engineering in Biology an Medicine / Alliance pour le génie biologique et médical) and the SFGBM (BioMedical Engineering French Society / Société française de génie biologique médical) and the AFIB (French Association of Biomedical Engineers / Association française des ingénieurs biomédicaux).
As a vehicle of information and knowledge in the field of biomedical technologies, IRBM is devoted to fundamental as well as clinical research. Biomedical engineering and use of new technologies are the cornerstones of IRBM, providing authors and users with the latest information. Its six issues per year propose reviews (state-of-the-art and current knowledge), original articles directed at fundamental research and articles focusing on biomedical engineering. All articles are submitted to peer reviewers acting as guarantors for IRBM''s scientific and medical content. The field covered by IRBM includes all the discipline of Biomedical engineering. Thereby, the type of papers published include those that cover the technological and methodological development in:
-Physiological and Biological Signal processing (EEG, MEG, ECG…)-
Medical Image processing-
Biomechanics-
Biomaterials-
Medical Physics-
Biophysics-
Physiological and Biological Sensors-
Information technologies in healthcare-
Disability research-
Computational physiology-
…