A remark on deformation of Gromov non-squeezing

IF 0.7 4区 数学 Q3 MATHEMATICS
Yasha Savelyev
{"title":"A remark on deformation of Gromov non-squeezing","authors":"Yasha Savelyev","doi":"10.1016/j.difgeo.2025.102262","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>R</mi><mo>,</mo><mi>r</mi></math></span> be as in the classical Gromov non-squeezing theorem, and let <span><math><mi>ϵ</mi><mo>=</mo><mo>(</mo><mi>π</mi><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>/</mo><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We first conjecture that the Gromov non-squeezing phenomenon persists for deformations of the symplectic form on the range <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> (w.r.t. the standard metric) <em>ϵ</em>-nearby to the standard symplectic form. We prove this in some special cases, in particular when the dimension is four and when <span><math><mi>R</mi><mo>&lt;</mo><msqrt><mrow><mn>2</mn></mrow></msqrt><mi>r</mi></math></span>. Given such a perturbation, we can no longer compactify the range and hence the classical Gromov argument breaks down. Our main method consists of a certain trap idea for holomorphic curves, analogous to traps in dynamical systems.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"100 ","pages":"Article 102262"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000373","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R,r be as in the classical Gromov non-squeezing theorem, and let ϵ=(πR2πr2)/πr2. We first conjecture that the Gromov non-squeezing phenomenon persists for deformations of the symplectic form on the range C0 (w.r.t. the standard metric) ϵ-nearby to the standard symplectic form. We prove this in some special cases, in particular when the dimension is four and when R<2r. Given such a perturbation, we can no longer compactify the range and hence the classical Gromov argument breaks down. Our main method consists of a certain trap idea for holomorphic curves, analogous to traps in dynamical systems.
关于Gromov非挤压变形的评述
设R, R和经典Gromov非压缩定理一样,设λ =(πR2 - πR2)/ πR2。我们首先推测,对于辛形式的变形,在C0 (w.r.t.标准度规)ϵ-nearby到标准辛形式的范围内,Gromov非压缩现象持续存在。我们在一些特殊情况下证明了这一点,特别是当维度是4和R<;2r时。给定这样的扰动,我们就不能再紧化值域,因此经典的Gromov论证就失效了。我们的主要方法包括全纯曲线的陷阱思想,类似于动力系统中的陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信