Enhancement of mechanical properties of thermite heat assisted friction stir welded aluminium bronze alloy (C95300) by eliminating tunnel defect

IF 3.8 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tamil Prabakaran S , Sudha J , Siva S , Balamurali Duraivel , Vivekananda A S
{"title":"Enhancement of mechanical properties of thermite heat assisted friction stir welded aluminium bronze alloy (C95300) by eliminating tunnel defect","authors":"Tamil Prabakaran S ,&nbsp;Sudha J ,&nbsp;Siva S ,&nbsp;Balamurali Duraivel ,&nbsp;Vivekananda A S","doi":"10.1016/j.jajp.2025.100317","DOIUrl":null,"url":null,"abstract":"<div><div>Thermite Heat-Assisted Friction Stir Welding (THAFSW) is recognized as an efficient welding method for joining aluminium bronze (AB) alloys. The mechanical and metallurgical characteristics of the welded joints were analyzed and compared with those fabricated using the conventional friction stir welding (CFSW) technique. Tensile strength and hardness assessments of the welded specimens were conducted at ambient temperature. The findings revealed that the THAFSW joints exhibited superior mechanical properties, with tensile strength and elongation improving by 11 % and 25 %, respectively, compared to joints produced through the conventional approach. The strengthening mechanism of the welded joints was examined based on images captured through macroscopy, optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The THAFSW process effectively eliminated tunnel defects and facilitated the development of a uniform α-phase microstructure, which contributed to enhanced mechanical performance.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"11 ","pages":"Article 100317"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266633092500038X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thermite Heat-Assisted Friction Stir Welding (THAFSW) is recognized as an efficient welding method for joining aluminium bronze (AB) alloys. The mechanical and metallurgical characteristics of the welded joints were analyzed and compared with those fabricated using the conventional friction stir welding (CFSW) technique. Tensile strength and hardness assessments of the welded specimens were conducted at ambient temperature. The findings revealed that the THAFSW joints exhibited superior mechanical properties, with tensile strength and elongation improving by 11 % and 25 %, respectively, compared to joints produced through the conventional approach. The strengthening mechanism of the welded joints was examined based on images captured through macroscopy, optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The THAFSW process effectively eliminated tunnel defects and facilitated the development of a uniform α-phase microstructure, which contributed to enhanced mechanical performance.
消除隧道缺陷提高铝热辅助搅拌摩擦焊铝青铜合金(C95300)的力学性能
铝热剂热辅助搅拌摩擦焊(THAFSW)被认为是连接铝青铜(AB)合金的一种有效的焊接方法。对焊接接头的力学和冶金特性进行了分析,并与传统搅拌摩擦焊(CFSW)工艺进行了比较。焊接试样的抗拉强度和硬度评估在室温下进行。研究结果表明,与传统方法生产的接头相比,THAFSW接头具有优越的机械性能,抗拉强度和伸长率分别提高了11%和25%。通过宏观显微镜、光学显微镜、扫描电镜和透射电镜对焊接接头的强化机理进行了研究。THAFSW工艺有效地消除了隧道缺陷,促进了α-相组织的均匀发展,从而提高了材料的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
9.80%
发文量
58
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信