Ali Aouf , Eric Laloy , Bart Rogiers , Christophe De Vleeschouwer
{"title":"3D clay microstructure synthesis using Denoising Diffusion Probabilistic Models","authors":"Ali Aouf , Eric Laloy , Bart Rogiers , Christophe De Vleeschouwer","doi":"10.1016/j.acags.2025.100248","DOIUrl":null,"url":null,"abstract":"<div><div>This work is concerned with the challenging task of generating 3D-consistent binary microstructures of heterogeneous clay materials. We leverage denoising diffusion probabilistic models (DDPMs) to do so and show that DDPMs outperform two classical generative adversarial networks (GANs) for a 2D generation task. Next, our experiments demonstrate that our DDPMs can produce high-quality, diverse realizations that well capture the spatial statistics of two distinct clay microstructures. Moreover, we show that DDPMs can be implicitly trained to generate porosity-conditioned samples. To the best of our knowledge, this is the first study that addresses clay microstructure generation with DDPMs.</div></div>","PeriodicalId":33804,"journal":{"name":"Applied Computing and Geosciences","volume":"26 ","pages":"Article 100248"},"PeriodicalIF":3.2000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing and Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590197425000308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work is concerned with the challenging task of generating 3D-consistent binary microstructures of heterogeneous clay materials. We leverage denoising diffusion probabilistic models (DDPMs) to do so and show that DDPMs outperform two classical generative adversarial networks (GANs) for a 2D generation task. Next, our experiments demonstrate that our DDPMs can produce high-quality, diverse realizations that well capture the spatial statistics of two distinct clay microstructures. Moreover, we show that DDPMs can be implicitly trained to generate porosity-conditioned samples. To the best of our knowledge, this is the first study that addresses clay microstructure generation with DDPMs.