Functional dimensionality of Koopman eigenfunction space

IF 1.4 Q2 MATHEMATICS, APPLIED
Ido Cohen , Eli Appleboim , Gershon Wolansky
{"title":"Functional dimensionality of Koopman eigenfunction space","authors":"Ido Cohen ,&nbsp;Eli Appleboim ,&nbsp;Gershon Wolansky","doi":"10.1016/j.rinam.2025.100585","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the general form solution of <em>Koopman Partial Differential Equation</em> for an autonomous system of <span><math><mi>N</mi></math></span> ordinary differential equations. We identify a domain in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> for which any number in the complex plane is an eigenvalue of the Koopman operator, and all eigensolutions are obtained from <span><math><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></math></span> functionally independent invariants of the system. Thus, we demonstrate that one may, in principle, diagonalize the system with only <span><math><mi>N</mi></math></span> functionally independent Koopman eigenfunctions.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100585"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the general form solution of Koopman Partial Differential Equation for an autonomous system of N ordinary differential equations. We identify a domain in RN for which any number in the complex plane is an eigenvalue of the Koopman operator, and all eigensolutions are obtained from N1 functionally independent invariants of the system. Thus, we demonstrate that one may, in principle, diagonalize the system with only N functionally independent Koopman eigenfunctions.
库普曼特征函数空间的泛函维数
本文给出了N个常微分方程自治系统的Koopman偏微分方程的一般形式解。我们在RN中确定了一个定域,对于这个定域,复平面上的任意数都是库普曼算子的特征值,并且所有的特征解都是由系统的N−1个函数无关不变量得到的。因此,我们证明了原则上可以只用N个函数独立的库普曼特征函数对角化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信