Jingwen Chen , Yedi Huang , Daocheng Zuo , Ruimin Shan , Songmao Li , Ran Li , Dong Hua , Qiang Zhan , Xudong Song , Yun Chen , Pei Ma , Ling Ma , Guoquan Tao , Yongqian Shu
{"title":"Dysregulated lipids homeostasis disrupts CHAC1-mediated ferroptosis driving fibroblast growth factor receptor tyrosine kinase inhibitor AZD4547 resistance in gastric cancer","authors":"Jingwen Chen , Yedi Huang , Daocheng Zuo , Ruimin Shan , Songmao Li , Ran Li , Dong Hua , Qiang Zhan , Xudong Song , Yun Chen , Pei Ma , Ling Ma , Guoquan Tao , Yongqian Shu","doi":"10.1016/j.redox.2025.103693","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>This study investigates the mechanisms underlying acquired resistance to FGFR tyrosine kinase inhibitor (FGFR-TKI) in gastric cancer (GC), focusing on the interplay between ferroptosis and lipid metabolism of tumor cells.</div></div><div><h3>Methods</h3><div>We constructed FGFR-TKI-resistant cell lines from GC cells. RNA sequencing was performed to identify differentially expressed genes (DEGs) related to ferroptosis and assess lipid metabolism in resistant cells. GC microenvironment lipid profile was characterized by HPLC-MS/MS lipidomics. The effects of CHAC1 and cholesterol synthesis modulation on ferroptosis and FGFR-TKI resistance were assessed using in vitro and in vivo models.</div></div><div><h3>Results</h3><div>We found that FGFR-TKI can induce ferroptosis in FGFR-TKI-sensitive cells, while resistant cells exhibit decreased sensitivity to ferroptosis due to reduced CHAC1 expression, a key glutathione-specific degrading enzyme. Overexpression of CHAC1 enhances FGFR-TKI cytotoxicity. Additionally, cholesterol accumulation in resistant cells, associated with diminished stearic acid (SA) uptake, confers FGFR-TKI-induced ferroptosis resistance. In vivo studies show that CHAC1 overexpression or cholesterol synthesis inhibition can reverse FGFR-TKI resistance, which is dependent on ferroptosis.</div></div><div><h3>Conclusions</h3><div>Dysregulated lipid homeostasis downregulated CHAC1-mediated ferroptosis, leading to FGFR-TKI resistance in gastric cancer. Overexpression of CHAC1 or inhibiting cholesterol synthesis presents promising therapeutic strategies to overcome FGFR-TKI resistance in GC.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"84 ","pages":"Article 103693"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221323172500206X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
This study investigates the mechanisms underlying acquired resistance to FGFR tyrosine kinase inhibitor (FGFR-TKI) in gastric cancer (GC), focusing on the interplay between ferroptosis and lipid metabolism of tumor cells.
Methods
We constructed FGFR-TKI-resistant cell lines from GC cells. RNA sequencing was performed to identify differentially expressed genes (DEGs) related to ferroptosis and assess lipid metabolism in resistant cells. GC microenvironment lipid profile was characterized by HPLC-MS/MS lipidomics. The effects of CHAC1 and cholesterol synthesis modulation on ferroptosis and FGFR-TKI resistance were assessed using in vitro and in vivo models.
Results
We found that FGFR-TKI can induce ferroptosis in FGFR-TKI-sensitive cells, while resistant cells exhibit decreased sensitivity to ferroptosis due to reduced CHAC1 expression, a key glutathione-specific degrading enzyme. Overexpression of CHAC1 enhances FGFR-TKI cytotoxicity. Additionally, cholesterol accumulation in resistant cells, associated with diminished stearic acid (SA) uptake, confers FGFR-TKI-induced ferroptosis resistance. In vivo studies show that CHAC1 overexpression or cholesterol synthesis inhibition can reverse FGFR-TKI resistance, which is dependent on ferroptosis.
Conclusions
Dysregulated lipid homeostasis downregulated CHAC1-mediated ferroptosis, leading to FGFR-TKI resistance in gastric cancer. Overexpression of CHAC1 or inhibiting cholesterol synthesis presents promising therapeutic strategies to overcome FGFR-TKI resistance in GC.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.