{"title":"Potent mitochondria-targeting rutheniumII and iridiumIII anticancer complexes containing hybrid N^NH-chelated ligands","authors":"Heqian Dong, Hanxiu Fu, Kangning Lai, Zhihao Yang, Shuli Wang, Qiuyi Lv, Zhe Liu, Lihua Guo","doi":"10.1016/j.jinorgbio.2025.112960","DOIUrl":null,"url":null,"abstract":"<div><div>A series of half-sandwich ruthenium<sup>II</sup> and iridium<sup>III</sup> complexes bearing hybrid sp<sup>3</sup>-N/sp<sup>2</sup>-N amine-imine bidentate chelating ligands were strategically designed and synthesized. Their structures were fully characterized by <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction, revealing nonplanar five-membered metallacycles in representative complexes. The complexes exhibited potent cytotoxicity against A549 lung, HeLa cervical, and HepG2 liver cancer cell lines, with IC<sub>50</sub> values ranging from 0.88 to 4.98 μM, significantly lower than that of cisplatin. Notably, the amine-imine complexes displayed superior cytotoxicity compared to their α-diimine analogues. Mechanistic studies indicated that DNA binding is not the primary mode of action. Instead, these complexes selectively target mitochondria, induce mitochondrial membrane depolarization, elevate intracellular reactive oxygen species (ROS) levels, and trigger apoptosis. Additionally, they enter A549 cells through an energy-dependent pathway and effectively inhibit cancer cell migration in vitro.</div></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":"271 ","pages":"Article 112960"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013425001400","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A series of half-sandwich rutheniumII and iridiumIII complexes bearing hybrid sp3-N/sp2-N amine-imine bidentate chelating ligands were strategically designed and synthesized. Their structures were fully characterized by 1H and 13C NMR spectroscopy, mass spectrometry, and single-crystal X-ray diffraction, revealing nonplanar five-membered metallacycles in representative complexes. The complexes exhibited potent cytotoxicity against A549 lung, HeLa cervical, and HepG2 liver cancer cell lines, with IC50 values ranging from 0.88 to 4.98 μM, significantly lower than that of cisplatin. Notably, the amine-imine complexes displayed superior cytotoxicity compared to their α-diimine analogues. Mechanistic studies indicated that DNA binding is not the primary mode of action. Instead, these complexes selectively target mitochondria, induce mitochondrial membrane depolarization, elevate intracellular reactive oxygen species (ROS) levels, and trigger apoptosis. Additionally, they enter A549 cells through an energy-dependent pathway and effectively inhibit cancer cell migration in vitro.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.