PCCNN: A CNN classification model integrating EEG time-frequency features for stroke classification

Teng Wang , Fenglian Li , Jia Yang , Wenhui Jia , Fengyun Hu
{"title":"PCCNN: A CNN classification model integrating EEG time-frequency features for stroke classification","authors":"Teng Wang ,&nbsp;Fenglian Li ,&nbsp;Jia Yang ,&nbsp;Wenhui Jia ,&nbsp;Fengyun Hu","doi":"10.1016/j.cogr.2025.05.002","DOIUrl":null,"url":null,"abstract":"<div><div>Stroke classification is crucial for timely diagnosis and treatment, as it helps differentiate between hemorrhagic and ischemic strokes, which require distinct clinical interventions. This paper proposes a stroke classification method using multi-channel electroencephalography (EEG) data. Unlike single-channel data or simple multi-channel concatenation, our method processes EEG data as a channel matrix, significantly improving classification performance. We employ two complementary feature extraction techniques: discrete wavelet transform (DWT) and empirical mode decomposition (EMD). DWT extracts multi-scale wavelet coefficients from stroke-related frequency bands, while EMD decomposes EEG signals into intrinsic mode functions (IMFs), representing narrowband oscillation components. To enhance feature quality, we propose a hybrid selection method that integrates four metrics—information entropy, power spectral density (PSD) distance, statistical significance, and maximum information coefficient (MIC)—to comprehensively evaluate IMFs. This method accounts for both the intrinsic information content of EEG signals and the inter-class differences between hemorrhagic and ischemic stroke subjects. Furthermore, this paper designs a pyramid cascade convolutional neural network (PCCNN) model with multi-branch independent learning and hierarchical fusion. Each DWT and EMD feature is processed by an independent one-dimensional convolutional neural networks (1D-CNN) branch for targeted extraction. A pyramid fusion mechanism integrates branch outputs into a fused feature vector, enabling the feature interaction through a top-level fusion CNN. Experimental results demonstrate that the proposed method, which integrates channel matrix processing, high-quality DWT and EMD feature selection, and multi-branch feature fusion, significantly outperforms single-feature methods. The fusion feature achieves a classification accuracy of 99.48 %, effectively distinguishing EEG data of hemorrhagic and ischemic stroke.</div></div>","PeriodicalId":100288,"journal":{"name":"Cognitive Robotics","volume":"5 ","pages":"Pages 211-225"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266724132500014X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke classification is crucial for timely diagnosis and treatment, as it helps differentiate between hemorrhagic and ischemic strokes, which require distinct clinical interventions. This paper proposes a stroke classification method using multi-channel electroencephalography (EEG) data. Unlike single-channel data or simple multi-channel concatenation, our method processes EEG data as a channel matrix, significantly improving classification performance. We employ two complementary feature extraction techniques: discrete wavelet transform (DWT) and empirical mode decomposition (EMD). DWT extracts multi-scale wavelet coefficients from stroke-related frequency bands, while EMD decomposes EEG signals into intrinsic mode functions (IMFs), representing narrowband oscillation components. To enhance feature quality, we propose a hybrid selection method that integrates four metrics—information entropy, power spectral density (PSD) distance, statistical significance, and maximum information coefficient (MIC)—to comprehensively evaluate IMFs. This method accounts for both the intrinsic information content of EEG signals and the inter-class differences between hemorrhagic and ischemic stroke subjects. Furthermore, this paper designs a pyramid cascade convolutional neural network (PCCNN) model with multi-branch independent learning and hierarchical fusion. Each DWT and EMD feature is processed by an independent one-dimensional convolutional neural networks (1D-CNN) branch for targeted extraction. A pyramid fusion mechanism integrates branch outputs into a fused feature vector, enabling the feature interaction through a top-level fusion CNN. Experimental results demonstrate that the proposed method, which integrates channel matrix processing, high-quality DWT and EMD feature selection, and multi-branch feature fusion, significantly outperforms single-feature methods. The fusion feature achieves a classification accuracy of 99.48 %, effectively distinguishing EEG data of hemorrhagic and ischemic stroke.
PCCNN:一种集成脑电时频特征的CNN分类模型,用于脑卒中分类
中风分类对于及时诊断和治疗至关重要,因为它有助于区分出血性和缺血性中风,这需要不同的临床干预措施。提出了一种基于多通道脑电图数据的脑卒中分类方法。与单通道数据或简单的多通道拼接不同,我们的方法将脑电数据作为通道矩阵处理,显著提高了分类性能。我们采用了两种互补的特征提取技术:离散小波变换(DWT)和经验模态分解(EMD)。DWT从脑卒中相关频带提取多尺度小波系数,EMD将脑电信号分解为表征窄带振荡分量的内禀模态函数(IMFs)。为了提高特征质量,我们提出了一种综合信息熵、功率谱密度(PSD)距离、统计显著性和最大信息系数(MIC)四个指标的混合选择方法来综合评价imf。该方法既考虑了脑电图信号的固有信息量,又考虑了出血性脑卒中与缺血性脑卒中受试者的类间差异。在此基础上,设计了一种具有多分支独立学习和层次融合的金字塔级联卷积神经网络模型。每个DWT和EMD特征由一个独立的一维卷积神经网络(1D-CNN)分支进行处理,进行有针对性的提取。金字塔融合机制将分支输出整合为融合的特征向量,通过顶层融合CNN实现特征交互。实验结果表明,该方法集成了信道矩阵处理、高质量DWT和EMD特征选择以及多分支特征融合,显著优于单特征方法。该融合特征分类准确率达99.48%,可有效区分出血性脑卒中和缺血性脑卒中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信