{"title":"An End-to-End Pipeline Perspective on Video Streaming in Best-Effort Networks: A Survey and Tutorial","authors":"Leonardo Peroni, Sergey Gorinsky","doi":"10.1145/3742472","DOIUrl":null,"url":null,"abstract":"Remaining a dominant force in Internet traffic, video streaming captivates end users, service providers, and researchers. This paper takes a pragmatic approach to reviewing recent advances in the field by focusing on the prevalent streaming paradigm that involves delivering long-form two-dimensional videos over the best-effort Internet with client-side adaptive bitrate (ABR) algorithms and assistance from content delivery networks (CDNs). To enhance accessibility, we supplement the survey with tutorial material. Unlike existing surveys that offer fragmented views, our work provides a holistic perspective on the entire end-to-end streaming pipeline, from video capture by a camera-equipped device to playback by the end user. Our novel perspective covers the ingestion, processing, and distribution stages of the pipeline and addresses key challenges such as video compression, upload, transcoding, ABR algorithms, CDN support, and quality of experience. We review over 200 papers and classify streaming designs by problem-solving methodology, whether based on intuition, theory, or machine learning. The survey further refines these methodology-based categories and characterizes each design by additional traits such as compatible codecs. We connect the reviewed research to real-world applications by discussing the practices of commercial streaming platforms. Finally, the survey highlights prominent current trends and outlines future directions in video streaming.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"38 1","pages":""},"PeriodicalIF":28.0000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3742472","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Remaining a dominant force in Internet traffic, video streaming captivates end users, service providers, and researchers. This paper takes a pragmatic approach to reviewing recent advances in the field by focusing on the prevalent streaming paradigm that involves delivering long-form two-dimensional videos over the best-effort Internet with client-side adaptive bitrate (ABR) algorithms and assistance from content delivery networks (CDNs). To enhance accessibility, we supplement the survey with tutorial material. Unlike existing surveys that offer fragmented views, our work provides a holistic perspective on the entire end-to-end streaming pipeline, from video capture by a camera-equipped device to playback by the end user. Our novel perspective covers the ingestion, processing, and distribution stages of the pipeline and addresses key challenges such as video compression, upload, transcoding, ABR algorithms, CDN support, and quality of experience. We review over 200 papers and classify streaming designs by problem-solving methodology, whether based on intuition, theory, or machine learning. The survey further refines these methodology-based categories and characterizes each design by additional traits such as compatible codecs. We connect the reviewed research to real-world applications by discussing the practices of commercial streaming platforms. Finally, the survey highlights prominent current trends and outlines future directions in video streaming.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.