Accurate Prediction of Hybrid Nanofluids Viscosity: A Comparison of Soft Computational Approaches, Empirical, and Theoretical Models

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Hossein Ghadery‐Fahliyany, Majid Mohammadi, Mohammad Haji‐Savameri, Saeed Jafari, Mahin Schaffie, Mehrorang Ghaedi, Abdolhossein Hemmati‐Sarapardeh
{"title":"Accurate Prediction of Hybrid Nanofluids Viscosity: A Comparison of Soft Computational Approaches, Empirical, and Theoretical Models","authors":"Hossein Ghadery‐Fahliyany, Majid Mohammadi, Mohammad Haji‐Savameri, Saeed Jafari, Mahin Schaffie, Mehrorang Ghaedi, Abdolhossein Hemmati‐Sarapardeh","doi":"10.1002/adts.202401323","DOIUrl":null,"url":null,"abstract":"Hybrid nanofluids exhibit enhanced thermal properties compared to conventional nanofluids. Viscosity, critical for assessing heat transfer efficiency, influences pressure drop and pumping power. This study models hybrid nanofluid viscosity using Radial Basis Function (RBF), Multilayer Perceptron (MLP), and a Committee Machine Intelligent System (CMIS). A dataset of 584 viscosity data points is utilized. Particle Swarm Optimization (PSO) and Farmland Fertility Algorithm (FFA) are employed to train the RBF, while the MLP utilized Scaled Conjugate Gradient (SCG), Bayesian Regularization (BR), and Levenberg‐Marquardt (LM) algorithms. The CMIS is created by integrating MLP‐BR, RBF‐FFA, and RBF‐PSO networks. The AAPRE values for RBF‐PSO, RBF‐FFA, MLP‐LM, MLP‐SCG, MLP‐BR, and CMIS models are 1.7464, 1.6647, 2.6851, 2.1889, 2.1792, and 1.519, respectively. The R<jats:sup>2</jats:sup> values are 0.9689, 0.9394, 0.4794, 0.9727, 0.9404, and 0.9688, respectively, which indicates that the CMIS model with the lowest Average Absolute Percent Relative Error (AAPRE) and the highest Determination Coefficient (R<jats:sup>2</jats:sup>) value is the most accurate model and outperforms other models in estimating viscosity, demonstrating greater accuracy than empirical and theoretical models. Sensitivity analysis showed that temperature has a significant positive impact on viscosity, while nanoparticle size has a negative effect. The CMIS model is reliable for predicting nanofluid viscosity, exhibiting a broad application range and minimal outlier data.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"12 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401323","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid nanofluids exhibit enhanced thermal properties compared to conventional nanofluids. Viscosity, critical for assessing heat transfer efficiency, influences pressure drop and pumping power. This study models hybrid nanofluid viscosity using Radial Basis Function (RBF), Multilayer Perceptron (MLP), and a Committee Machine Intelligent System (CMIS). A dataset of 584 viscosity data points is utilized. Particle Swarm Optimization (PSO) and Farmland Fertility Algorithm (FFA) are employed to train the RBF, while the MLP utilized Scaled Conjugate Gradient (SCG), Bayesian Regularization (BR), and Levenberg‐Marquardt (LM) algorithms. The CMIS is created by integrating MLP‐BR, RBF‐FFA, and RBF‐PSO networks. The AAPRE values for RBF‐PSO, RBF‐FFA, MLP‐LM, MLP‐SCG, MLP‐BR, and CMIS models are 1.7464, 1.6647, 2.6851, 2.1889, 2.1792, and 1.519, respectively. The R2 values are 0.9689, 0.9394, 0.4794, 0.9727, 0.9404, and 0.9688, respectively, which indicates that the CMIS model with the lowest Average Absolute Percent Relative Error (AAPRE) and the highest Determination Coefficient (R2) value is the most accurate model and outperforms other models in estimating viscosity, demonstrating greater accuracy than empirical and theoretical models. Sensitivity analysis showed that temperature has a significant positive impact on viscosity, while nanoparticle size has a negative effect. The CMIS model is reliable for predicting nanofluid viscosity, exhibiting a broad application range and minimal outlier data.
混合纳米流体粘度的准确预测:软计算方法、经验和理论模型的比较
与传统纳米流体相比,混合纳米流体表现出更强的热性能。粘度是评估传热效率的关键,影响压降和泵送功率。本研究采用径向基函数(RBF)、多层感知器(MLP)和委员会机器智能系统(CMIS)对混合纳米流体粘度进行建模。使用了584个粘度数据点的数据集。RBF采用粒子群优化(PSO)和农田肥力算法(FFA)进行训练,MLP采用缩放共轭梯度(SCG)、贝叶斯正则化(BR)和Levenberg‐Marquardt (LM)算法进行训练。CMIS是通过整合MLP - BR、RBF - FFA和RBF - PSO网络创建的。RBF - PSO、RBF - FFA、MLP - LM、MLP - SCG、MLP - BR和CMIS模型的AAPRE值分别为1.7464、1.6647、2.6851、2.1889、2.1792和1.519。R2值分别为0.9689、0.9394、0.4794、0.9727、0.9404和0.9688,表明具有最低平均绝对相对误差(AAPRE)和最高决定系数(R2)的CMIS模型是最准确的模型,在估计粘度方面优于其他模型,精度高于经验模型和理论模型。灵敏度分析表明,温度对粘度有显著的正影响,而纳米颗粒尺寸对粘度有显著的负影响。CMIS模型预测纳米流体粘度可靠,应用范围广,异常值最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信