Estimating transmission parameters and the reproduction number: COVID-19 in Sri Lanka as a case study.

Dinesh B Ekanayake, Iduruwage Harsha Premarathna, Elizabeth Hansen
{"title":"Estimating transmission parameters and the reproduction number: COVID-19 in Sri Lanka as a case study.","authors":"Dinesh B Ekanayake, Iduruwage Harsha Premarathna, Elizabeth Hansen","doi":"10.1093/imammb/dqaf005","DOIUrl":null,"url":null,"abstract":"<p><p>The study of the dynamics of an infectious disease is fundamental to understanding its community spread. These include obtaining estimates for transmission rates, recovery rates, and the average number of secondary cases per infectious case (reproduction number). Social behaviors, control measures, environmental conditions, and long recovery times result in time varying parameters. Further, imperfect data and many uncertainties lead to inaccurate estimations. This is particularly true in third-world countries, where a greater proportion of people with mild infections may not seek medical treatment. Data on the prevalence of COVID-19 provides an excellent source for case studies to analyze time-dependent parameters. Using Sri Lankan COVID-19 data, we demonstrate how one could utilize Itˆo stochastic differential equations with a gamma distribution correction to estimate disease transmission parameters as a function of time. As we illustrated here, the model is well-suited for forecasting the dates of peak prevalence and the number of new cases using the estimated parameters.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqaf005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of the dynamics of an infectious disease is fundamental to understanding its community spread. These include obtaining estimates for transmission rates, recovery rates, and the average number of secondary cases per infectious case (reproduction number). Social behaviors, control measures, environmental conditions, and long recovery times result in time varying parameters. Further, imperfect data and many uncertainties lead to inaccurate estimations. This is particularly true in third-world countries, where a greater proportion of people with mild infections may not seek medical treatment. Data on the prevalence of COVID-19 provides an excellent source for case studies to analyze time-dependent parameters. Using Sri Lankan COVID-19 data, we demonstrate how one could utilize Itˆo stochastic differential equations with a gamma distribution correction to estimate disease transmission parameters as a function of time. As we illustrated here, the model is well-suited for forecasting the dates of peak prevalence and the number of new cases using the estimated parameters.

估计传播参数和繁殖数量:以斯里兰卡COVID-19为例研究。
对传染病动力学的研究是了解其社区传播的基础。其中包括获得传播率、恢复率和每个感染病例的平均继发病例数(繁殖数)的估计值。社会行为、控制措施、环境条件和较长的恢复时间导致参数时变。此外,不完善的数据和许多不确定因素导致不准确的估计。在第三世界国家尤其如此,那里有更大比例的轻度感染患者可能不寻求治疗。关于COVID-19流行率的数据为案例研究提供了一个很好的来源,可以分析与时间有关的参数。利用斯里兰卡的COVID-19数据,我们展示了如何利用具有伽马分布校正的随机微分方程来估计疾病传播参数作为时间的函数。正如我们在这里说明的那样,该模型非常适合使用估计参数预测高峰流行日期和新病例数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信