Next-Generation Nucleic Acid Delivery: A Review of Nanobiosystem Design and Applications.

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Ashish Kumar Parashar, Anu Hardenia, Sunil Kumar Dwivedi, Gaurav Kant Saraogi, Shiv Hardenia
{"title":"Next-Generation Nucleic Acid Delivery: A Review of Nanobiosystem Design and Applications.","authors":"Ashish Kumar Parashar, Anu Hardenia, Sunil Kumar Dwivedi, Gaurav Kant Saraogi, Shiv Hardenia","doi":"10.2174/0115665232367377250519114910","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing approval of nucleic acid therapeutics has led to a significant advancement in medicines, demonstrating their potential to revolutionize the prevention and treatment of numerous diseases. However, challenges like nuclease degradation and difficult cellular delivery hinder their use as therapeutic agents. The rising demand for precise gene therapy delivery has positioned nanobiosystems as a groundbreaking solution, with their customizable properties enabling targeted and efficient delivery. Nucleic Acid therapeutics, encompassing antisense DNA, mRNA, small interfering RNA (siRNA), and microRNA (miRNA), have been rigorously investigated for their capacity to modulate gene expression. Notably, integrating these gene therapies with nanoscale delivery platforms has significantly broadened their scope, facilitating sophisticated advancements in bioanalysis, gene silencing, protein replacement therapies, and the development of vaccines. This review provides a thorough review of recent advancements in nanobiosystems for therapeutic nucleic acid delivery. We explore the unique characteristics of various nanobiosystems, including gene therapy-based delivery, nanoparticles, stimuli-responsive systems, smart nanocarriers, and extracellular vesicle-based delivery. We offer a detailed overview of their applications in nucleic acid delivery. Furthermore, we address biological barriers and strategies for the therapeutic delivery of nucleic acids. Ultimately, this review provides critical insights into the strategic development of nextgeneration delivery vectors for nucleic acid therapeutics.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232367377250519114910","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing approval of nucleic acid therapeutics has led to a significant advancement in medicines, demonstrating their potential to revolutionize the prevention and treatment of numerous diseases. However, challenges like nuclease degradation and difficult cellular delivery hinder their use as therapeutic agents. The rising demand for precise gene therapy delivery has positioned nanobiosystems as a groundbreaking solution, with their customizable properties enabling targeted and efficient delivery. Nucleic Acid therapeutics, encompassing antisense DNA, mRNA, small interfering RNA (siRNA), and microRNA (miRNA), have been rigorously investigated for their capacity to modulate gene expression. Notably, integrating these gene therapies with nanoscale delivery platforms has significantly broadened their scope, facilitating sophisticated advancements in bioanalysis, gene silencing, protein replacement therapies, and the development of vaccines. This review provides a thorough review of recent advancements in nanobiosystems for therapeutic nucleic acid delivery. We explore the unique characteristics of various nanobiosystems, including gene therapy-based delivery, nanoparticles, stimuli-responsive systems, smart nanocarriers, and extracellular vesicle-based delivery. We offer a detailed overview of their applications in nucleic acid delivery. Furthermore, we address biological barriers and strategies for the therapeutic delivery of nucleic acids. Ultimately, this review provides critical insights into the strategic development of nextgeneration delivery vectors for nucleic acid therapeutics.

新一代核酸传递:纳米生物系统设计与应用综述。
核酸疗法得到越来越多的认可,导致了医学的重大进步,表明它们有可能彻底改变许多疾病的预防和治疗。然而,诸如核酸酶降解和细胞递送困难等挑战阻碍了它们作为治疗剂的使用。对精确基因治疗递送的需求不断增长,使得纳米生物系统作为一种突破性的解决方案,具有可定制的特性,可以实现靶向和高效的递送。核酸疗法,包括反义DNA、mRNA、小干扰RNA (siRNA)和microRNA (miRNA),已被严格研究其调节基因表达的能力。值得注意的是,将这些基因疗法与纳米级递送平台相结合,大大扩大了它们的范围,促进了生物分析、基因沉默、蛋白质替代疗法和疫苗开发方面的先进进展。本文综述了用于治疗性核酸传递的纳米生物系统的最新进展。我们探索了各种纳米生物系统的独特特性,包括基于基因治疗的递送、纳米颗粒、刺激响应系统、智能纳米载体和基于细胞外囊泡的递送。我们提供了它们在核酸传递中的应用的详细概述。此外,我们解决的生物屏障和策略的治疗输送核酸。最后,这篇综述为下一代核酸治疗递送载体的战略发展提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信