{"title":"Integrated multimodal hierarchical fusion and meta-learning for enhanced molecular property prediction.","authors":"Xianjun Han, Zhenglong Zhang, Can Bai, Zijian Wu","doi":"10.1093/bib/bbaf251","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12123521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf251","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Accurately predicting the pharmacological and toxicological properties of molecules is a critical step in the drug development process. Owing to the heterogeneity of molecular property prediction tasks, most of the current methods rely on building a base model and fine-tuning it to address specific properties. However, constructing a high-quality base model is a time-consuming procedure and requires a carefully designed network architecture; in addition, in certain rare molecular property prediction tasks, the base model often does not transfer well to new tasks. In this work, we adopt a meta-learning-based training framework that enables our model to adapt to diverse tasks with limited data, thereby preventing data scarcity from impacting certain molecular property predictions. Additionally, this framework leverages the correlations between different tasks, allowing the constructed model to quickly adapt to new prediction tasks. Moreover, we propose a multimodal fusion framework that combines two-dimensional molecular graphs with molecular images. In the molecular graphs, node-, motif-, and graph-level features are hierarchically guided from low to high levels, fully exploiting the molecular representation and more efficiently conducting hierarchical fusion. Experimental results indicate that our model outperforms the baseline models across various performance indicators, thereby validating the effectiveness of our approach.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.