Cailin R Gonyea, Yuanjun Shen, Katherine M Nelson, Rylie N Bird, Rachel M Gilbert, Oluyinka O Olutoye, Sundeep G Keswani, Jason P Gleghorn
{"title":"The nitrofen/bisdiamine murine model of congenital diaphragmatic hernia has a pulmonary hypertension vascular phenotype consistent with human CDH.","authors":"Cailin R Gonyea, Yuanjun Shen, Katherine M Nelson, Rylie N Bird, Rachel M Gilbert, Oluyinka O Olutoye, Sundeep G Keswani, Jason P Gleghorn","doi":"10.1152/ajplung.00233.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (CDH-PH) has severe implications for the survival of patients with CDH; however, CDH-PH is often refractory to pulmonary vasodilators, rendering it difficult to treat. As such, models are necessary to study the etiology, mechanism, onset, and progression of pulmonary vascular remodeling in CDH. Despite several established murine models of CDH, no characterized CDH-PH or CDH-associated pulmonary vascular remodeling murine model exists. In this work, we assessed the nitrofen/bisdiamine (N/B) murine CDH model for pulmonary hypertension (PH) hallmarks to establish its usefulness as a model for studying mechanisms leading to CDH-PH. To do so, we evaluated key metrics of vascular PH at two different gestational time points and compared the results to sex- and age-matched human CDH tissue sections and results from a meta-analysis of published data of human CDH samples. We found that vessel rarefaction, smooth muscle hypertrophy, and adventitial extracellular matrix deposition were present in the N/B CDH murine model at <i>E18.5</i> in late gestation. In addition, this same vascular PH phenotype was present much earlier in development at <i>E16.5</i>, after normal diaphragmatic development and closure, but still within the pseudoglandular phase of lung development. Finally, comparisons with human CDH data confirm that the N/B CDH murine model recapitulates the pulmonary hypertension vascular phenotype seen in human CDH lung sections. Together, these data validate a mouse CDH-PH model with the ability to genetically perturb pathways that may exacerbate or improve CDH-PH outcomes, which could, in turn, lead to therapies or diagnostic markers of CDH-PH severity in utero.<b>NEW & NOTEWORTHY</b> Pulmonary hypertension (PH) is a severe complication of congenital diaphragmatic hernia (CDH), yet mechanisms and potential interventions remain poorly understood, partly due to the lack of animal models. This study validated that the nitrofen/bisdiamine (N/B) CDH mouse model recapitulates a PH vascular phenotype, including vessel rarefaction, smooth muscle hypertrophy, and remodeling that is benchmarked to human CDH tissues. These findings suggest that this model is a robust in vivo tool for the mechanistic study of CDH-PH.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":"L48-L60"},"PeriodicalIF":3.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235656/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00233.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Congenital diaphragmatic hernia (CDH)-associated pulmonary hypertension (CDH-PH) has severe implications for the survival of patients with CDH; however, CDH-PH is often refractory to pulmonary vasodilators, rendering it difficult to treat. As such, models are necessary to study the etiology, mechanism, onset, and progression of pulmonary vascular remodeling in CDH. Despite several established murine models of CDH, no characterized CDH-PH or CDH-associated pulmonary vascular remodeling murine model exists. In this work, we assessed the nitrofen/bisdiamine (N/B) murine CDH model for pulmonary hypertension (PH) hallmarks to establish its usefulness as a model for studying mechanisms leading to CDH-PH. To do so, we evaluated key metrics of vascular PH at two different gestational time points and compared the results to sex- and age-matched human CDH tissue sections and results from a meta-analysis of published data of human CDH samples. We found that vessel rarefaction, smooth muscle hypertrophy, and adventitial extracellular matrix deposition were present in the N/B CDH murine model at E18.5 in late gestation. In addition, this same vascular PH phenotype was present much earlier in development at E16.5, after normal diaphragmatic development and closure, but still within the pseudoglandular phase of lung development. Finally, comparisons with human CDH data confirm that the N/B CDH murine model recapitulates the pulmonary hypertension vascular phenotype seen in human CDH lung sections. Together, these data validate a mouse CDH-PH model with the ability to genetically perturb pathways that may exacerbate or improve CDH-PH outcomes, which could, in turn, lead to therapies or diagnostic markers of CDH-PH severity in utero.NEW & NOTEWORTHY Pulmonary hypertension (PH) is a severe complication of congenital diaphragmatic hernia (CDH), yet mechanisms and potential interventions remain poorly understood, partly due to the lack of animal models. This study validated that the nitrofen/bisdiamine (N/B) CDH mouse model recapitulates a PH vascular phenotype, including vessel rarefaction, smooth muscle hypertrophy, and remodeling that is benchmarked to human CDH tissues. These findings suggest that this model is a robust in vivo tool for the mechanistic study of CDH-PH.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.