Helen Hemmling, Line A.E. Hallberg, Per Hägglund, Clare L. Hawkins
{"title":"Histones in neutrophil extracellular traps (NETs) contain oxidative post-translational modifications induced by the myeloperoxidase oxidant hypochlorous acid","authors":"Helen Hemmling, Line A.E. Hallberg, Per Hägglund, Clare L. Hawkins","doi":"10.1016/j.redox.2025.103696","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular traps (NETs) released by neutrophils during inflammation play a role in clearing infection but also contribute to disease pathology. NETs consist of a DNA backbone containing histones, anti-microbial granule proteins, such as myeloperoxidase (MPO), and other proteins. MPO remains enzymatically active and generates hypochlorous acid (HOCl) to kill pathogens. However, HOCl also readily reacts with proteins, but whether histones and other NET proteins are modified by this oxidant is unknown. This is significant as post-translational modification of histones alters their intracellular and extracellular reactivity. In this study, we used a proteomic approach to characterise the protein composition of NETs and identify HOCl-induced oxidative modifications on histones and other proteins. NETs were collected from primary neutrophils and the PLB-985 cell line and stimulated with phorbol myristate acetate (PMA) or nigericin, a bacterial peptide derived from <em>Streptomyces hygroscopicus</em>. There was evidence for Lys nitrile and aminoadipic semialdehyde formation, Tyr and Trp chlorination, and Met oxidation on histones and other proteins, including quinone oxidoreductase. Chlorination of Tyr-88 on histone H4 was particularly abundant and occurred to a greater extent in NETs from neutrophils exposed to PMA compared to nigericin, consistent with nigericin triggering NET release via a non-oxidative pathway. Chlorination of histone H4 Tyr-88 was also observed in the nuclear and cytoplasmic cell extracts of stimulated cells and could be decreased on treatment of the neutrophils with the MPO inhibitor AZD5904. These findings provide the first evidence that HOCl modifies proteins within NETs, particularly histone H4, which may be relevant in disease.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"84 ","pages":"Article 103696"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231725002095","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular traps (NETs) released by neutrophils during inflammation play a role in clearing infection but also contribute to disease pathology. NETs consist of a DNA backbone containing histones, anti-microbial granule proteins, such as myeloperoxidase (MPO), and other proteins. MPO remains enzymatically active and generates hypochlorous acid (HOCl) to kill pathogens. However, HOCl also readily reacts with proteins, but whether histones and other NET proteins are modified by this oxidant is unknown. This is significant as post-translational modification of histones alters their intracellular and extracellular reactivity. In this study, we used a proteomic approach to characterise the protein composition of NETs and identify HOCl-induced oxidative modifications on histones and other proteins. NETs were collected from primary neutrophils and the PLB-985 cell line and stimulated with phorbol myristate acetate (PMA) or nigericin, a bacterial peptide derived from Streptomyces hygroscopicus. There was evidence for Lys nitrile and aminoadipic semialdehyde formation, Tyr and Trp chlorination, and Met oxidation on histones and other proteins, including quinone oxidoreductase. Chlorination of Tyr-88 on histone H4 was particularly abundant and occurred to a greater extent in NETs from neutrophils exposed to PMA compared to nigericin, consistent with nigericin triggering NET release via a non-oxidative pathway. Chlorination of histone H4 Tyr-88 was also observed in the nuclear and cytoplasmic cell extracts of stimulated cells and could be decreased on treatment of the neutrophils with the MPO inhibitor AZD5904. These findings provide the first evidence that HOCl modifies proteins within NETs, particularly histone H4, which may be relevant in disease.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.