A staged deep learning approach to spatial refinement in 3D temporal atmospheric transport

M. Giselle Fernández-Godino , Wai Tong Chung , Akshay A. Gowardhan , Matthias Ihme , Qingkai Kong , Donald D. Lucas , Stephen C. Myers
{"title":"A staged deep learning approach to spatial refinement in 3D temporal atmospheric transport","authors":"M. Giselle Fernández-Godino ,&nbsp;Wai Tong Chung ,&nbsp;Akshay A. Gowardhan ,&nbsp;Matthias Ihme ,&nbsp;Qingkai Kong ,&nbsp;Donald D. Lucas ,&nbsp;Stephen C. Myers","doi":"10.1016/j.aiig.2025.100120","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume dispersion in complex terrain. However, their high computational cost makes them impractical for applications requiring rapid responses or iterative processes, such as optimization, uncertainty quantification, or inverse modeling. To address this challenge, this work introduces the Dual-Stage Temporal Three-dimensional UNet Super-resolution (DST3D-UNet-SR) model, a highly efficient deep learning model for plume dispersion predictions. DST3D-UNet-SR is composed of two sequential modules: the temporal module (TM), which predicts the transient evolution of a plume in complex terrain from low-resolution temporal data, and the spatial refinement module (SRM), which subsequently enhances the spatial resolution of the TM predictions. We train DST3D-UNet-SR using a comprehensive dataset derived from high-resolution large eddy simulations (LES) of plume transport. We propose the DST3D-UNet-SR model to significantly accelerate LES of three-dimensional (3D) plume dispersion by three orders of magnitude. Additionally, the model demonstrates the ability to dynamically adapt to evolving conditions through the incorporation of new observational data, substantially improving prediction accuracy in high-concentration regions near the source.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100120"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume dispersion in complex terrain. However, their high computational cost makes them impractical for applications requiring rapid responses or iterative processes, such as optimization, uncertainty quantification, or inverse modeling. To address this challenge, this work introduces the Dual-Stage Temporal Three-dimensional UNet Super-resolution (DST3D-UNet-SR) model, a highly efficient deep learning model for plume dispersion predictions. DST3D-UNet-SR is composed of two sequential modules: the temporal module (TM), which predicts the transient evolution of a plume in complex terrain from low-resolution temporal data, and the spatial refinement module (SRM), which subsequently enhances the spatial resolution of the TM predictions. We train DST3D-UNet-SR using a comprehensive dataset derived from high-resolution large eddy simulations (LES) of plume transport. We propose the DST3D-UNet-SR model to significantly accelerate LES of three-dimensional (3D) plume dispersion by three orders of magnitude. Additionally, the model demonstrates the ability to dynamically adapt to evolving conditions through the incorporation of new observational data, substantially improving prediction accuracy in high-concentration regions near the source.
基于阶段深度学习的三维时空大气传输空间细化方法
高分辨率时空模拟有效地捕捉了复杂地形下大气羽散的复杂性。然而,它们的高计算成本使得它们不适合需要快速响应或迭代过程的应用,例如优化、不确定性量化或逆建模。为了应对这一挑战,本工作引入了双阶段时间三维UNet超分辨率(DST3D-UNet-SR)模型,这是一种用于羽散预测的高效深度学习模型。DST3D-UNet-SR由两个连续模块组成:时间模块(TM)和空间细化模块(SRM),前者从低分辨率时间数据预测复杂地形中羽流的瞬态演变,后者提高了TM预测的空间分辨率。我们使用来自羽流传输的高分辨率大涡模拟(LES)的综合数据集来训练DST3D-UNet-SR。我们提出了DST3D-UNet-SR模型,将三维羽散的LES显著加速了三个数量级。此外,该模型通过纳入新的观测数据,显示出动态适应不断变化的条件的能力,大大提高了源附近高浓度区域的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信