Pengshan Guo , En Li , Qingnan Zhang , Xinyue Yan , Jinghua Li
{"title":"Hexagonal Cu2O/Pt for photothermal and photo-Fenton synergistic degradation of dye contaminant","authors":"Pengshan Guo , En Li , Qingnan Zhang , Xinyue Yan , Jinghua Li","doi":"10.1016/j.solidstatesciences.2025.107995","DOIUrl":null,"url":null,"abstract":"<div><div>The rising pollution of aquatic ecosystems due to industrial dyes makes it essential to create efficient strategies for remediation. In this study, we synthesized an unusual Cu<sub>2</sub>O/Pt photocatalytic Fenton-like catalyst through heterojunction engineering and high-temperature modification of cuprous oxide, with platinum nanoparticles serving as a cocatalyst to enhance charge separation and catalytic efficiency. Under near-infrared light irradiation, the Cu<sub>2</sub>O/Pt catalyst exhibited remarkable photothermal performance, rapidly achieving elevated temperatures that further accelerated the degradation of methylene blue. degradation experiments indicated that the Cu<sub>2</sub>O/Pt catalyst achieved over 99 % removal efficiency, outperforming pure Cu<sub>2</sub>O by facilitating greater hydroxyl radical generation through enhanced hydrogen peroxide decomposition. The enhanced degradation efficiency is attributed to the synergistic effect between Cu<sub>2</sub>O and Pt, which not only expands the effective pH range but also ensures the reproducibility and durability of the catalytic process. The results underscore the Cu<sub>2</sub>O/Pt system's advantageous potential for practical applications in wastewater treatment, offering an effective and sustainable approach to reduce industrial water pollution.</div></div>","PeriodicalId":432,"journal":{"name":"Solid State Sciences","volume":"167 ","pages":"Article 107995"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Sciences","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1293255825001736","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The rising pollution of aquatic ecosystems due to industrial dyes makes it essential to create efficient strategies for remediation. In this study, we synthesized an unusual Cu2O/Pt photocatalytic Fenton-like catalyst through heterojunction engineering and high-temperature modification of cuprous oxide, with platinum nanoparticles serving as a cocatalyst to enhance charge separation and catalytic efficiency. Under near-infrared light irradiation, the Cu2O/Pt catalyst exhibited remarkable photothermal performance, rapidly achieving elevated temperatures that further accelerated the degradation of methylene blue. degradation experiments indicated that the Cu2O/Pt catalyst achieved over 99 % removal efficiency, outperforming pure Cu2O by facilitating greater hydroxyl radical generation through enhanced hydrogen peroxide decomposition. The enhanced degradation efficiency is attributed to the synergistic effect between Cu2O and Pt, which not only expands the effective pH range but also ensures the reproducibility and durability of the catalytic process. The results underscore the Cu2O/Pt system's advantageous potential for practical applications in wastewater treatment, offering an effective and sustainable approach to reduce industrial water pollution.
期刊介绍:
Solid State Sciences is the journal for researchers from the broad solid state chemistry and physics community. It publishes key articles on all aspects of solid state synthesis, structure-property relationships, theory and functionalities, in relation with experiments.
Key topics for stand-alone papers and special issues:
-Novel ways of synthesis, inorganic functional materials, including porous and glassy materials, hybrid organic-inorganic compounds and nanomaterials
-Physical properties, emphasizing but not limited to the electrical, magnetical and optical features
-Materials related to information technology and energy and environmental sciences.
The journal publishes feature articles from experts in the field upon invitation.
Solid State Sciences - your gateway to energy-related materials.