{"title":"Inhibitory effects of schisandrin A on contractions induced by spasmogenic candidates in porcine coronary arteries","authors":"Qianghaodi Hong, Naho Takazakura, Hideaki Ozawa, Sakika Ichihara, Kento Yoshioka, Keisuke Obara, Yoshio Tanaka","doi":"10.1016/j.jphs.2025.05.016","DOIUrl":null,"url":null,"abstract":"<div><div>The inhibitory effects and underlying mechanisms of schisandrin A (SA) on contractions induced by spasmogenic candidates and related chemicals were investigated in porcine coronary arteries (PCAs). SA (10<sup>−5</sup>–10<sup>−4</sup> M) inhibited contractions induced by acetylcholine, histamine, serotonin, U46619 (thromboxane A<sub>2</sub> mimetic), prostaglandin F<sub>2α</sub>, and endothelin-1 in a concentration-dependent manner. The inhibition of acetylcholine-induced contractions by SA was stronger than that by diltiazem, although both SA and diltiazem ultimately achieved similar levels of inhibition against other contractions. SA also inhibited high-KCl-induced contractions in PCAs and suppressed high-KCl-induced increases in intracellular Ca<sup>2+</sup> concentrations in A7r5 cells. However, SA (10<sup>−4</sup> M) did not inhibit SKF-96365-sensitive phenylephrine-induced contractions, despite potently inhibiting high-KCl-induced contraction in the guinea pig thoracic aorta. SA did not strongly inhibit NaF-induced contractions in Ca<sup>2+</sup>-free solution containing 0.2 mM EGTA. Furthermore, SA inhibited muscarinic receptor binding in mouse cerebral cortex and inhibited carbachol-induced increases in intracellular Ca<sup>2+</sup> concentrations in 293T cells expressing muscarinic M<sub>3</sub> receptors. These findings indicate that SA inhibits coronary artery contractions induced by spasmogens primarily through the inhibition of L-type Ca<sup>2+</sup> channels (LCCs) and exerts an anticholinergic and LCC inhibitory effect on acetylcholine-induced contractions.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"158 4","pages":"Pages 343-352"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000611","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The inhibitory effects and underlying mechanisms of schisandrin A (SA) on contractions induced by spasmogenic candidates and related chemicals were investigated in porcine coronary arteries (PCAs). SA (10−5–10−4 M) inhibited contractions induced by acetylcholine, histamine, serotonin, U46619 (thromboxane A2 mimetic), prostaglandin F2α, and endothelin-1 in a concentration-dependent manner. The inhibition of acetylcholine-induced contractions by SA was stronger than that by diltiazem, although both SA and diltiazem ultimately achieved similar levels of inhibition against other contractions. SA also inhibited high-KCl-induced contractions in PCAs and suppressed high-KCl-induced increases in intracellular Ca2+ concentrations in A7r5 cells. However, SA (10−4 M) did not inhibit SKF-96365-sensitive phenylephrine-induced contractions, despite potently inhibiting high-KCl-induced contraction in the guinea pig thoracic aorta. SA did not strongly inhibit NaF-induced contractions in Ca2+-free solution containing 0.2 mM EGTA. Furthermore, SA inhibited muscarinic receptor binding in mouse cerebral cortex and inhibited carbachol-induced increases in intracellular Ca2+ concentrations in 293T cells expressing muscarinic M3 receptors. These findings indicate that SA inhibits coronary artery contractions induced by spasmogens primarily through the inhibition of L-type Ca2+ channels (LCCs) and exerts an anticholinergic and LCC inhibitory effect on acetylcholine-induced contractions.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.