Unique continuation for the wave equation based on a discontinuous Galerkin time discretization

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Erik Burman, Janosch Preuss
{"title":"Unique continuation for the wave equation based on a discontinuous Galerkin time discretization","authors":"Erik Burman, Janosch Preuss","doi":"10.1093/imanum/draf036","DOIUrl":null,"url":null,"abstract":"We consider a stable unique continuation problem for the wave equation that has been discretized so far using fairly sophisticated space-time methods. Here, we propose to solve this problem using a standard discontinuous Galerkin method for the temporal discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies that can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf036","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a stable unique continuation problem for the wave equation that has been discretized so far using fairly sophisticated space-time methods. Here, we propose to solve this problem using a standard discontinuous Galerkin method for the temporal discretization. Error estimates are established under a geometric control condition. We also investigate two preconditioning strategies that can be used to solve the arising globally coupled space-time system by means of simple time-stepping procedures. Our numerical experiments test the performance of these strategies and highlight the importance of the geometric control condition for reconstructing the solution beyond the data domain.
基于不连续伽辽金时间离散的波动方程的唯一延拓
我们考虑到目前为止用相当复杂的时空方法离散的波动方程的稳定唯一延拓问题。在这里,我们提出用一个标准的不连续伽辽金方法来解决这个问题。在几何控制条件下建立误差估计。我们还研究了两种预处理策略,这两种策略可以通过简单的时间步进程序来解决产生的全局耦合时空系统。我们的数值实验测试了这些策略的性能,并强调了几何控制条件对于重建数据域之外的解的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信