Rasmus S. Rasmussen, Ludvig S. Langberg, Frederikke Østergaard, Sophie W. Nielsen, Mark B. Vestergaard, Kirsa Skov-Jeppesen, Bolette Hartmann, Helle Hjorth Johannesen, Jens J. Holst, Bryan Haddock, Henrik B. W. Larsson, Mette M. Rosenkilde, Ali Asmar, Ulrik B. Andersen, Lærke S. Gasbjerg
{"title":"Glucose-Dependent Insulinotropic Polypeptide Is Involved in Postprandial Regulation of Splanchnic Blood Supply","authors":"Rasmus S. Rasmussen, Ludvig S. Langberg, Frederikke Østergaard, Sophie W. Nielsen, Mark B. Vestergaard, Kirsa Skov-Jeppesen, Bolette Hartmann, Helle Hjorth Johannesen, Jens J. Holst, Bryan Haddock, Henrik B. W. Larsson, Mette M. Rosenkilde, Ali Asmar, Ulrik B. Andersen, Lærke S. Gasbjerg","doi":"10.2337/db25-0149","DOIUrl":null,"url":null,"abstract":"Gastrointestinal hormones are essential for nutrient handling and regulation of glucose metabolism and may affect postprandial blood redistribution. In a randomized cross-over design in 10 healthy men, the involvement of glucose-dependent insulinotropic polypeptide (GIP) in splanchnic blood flow regulation was investigated using an infusion of GIP receptor antagonist (GIPR-An) GIP(3-30)NH2 during ingestion of oral glucose (75 g). In five separate sessions, we investigated GIP(1-42), GIPR-An with and without oral glucose, oral glucose alone, and a control saline infusion. Blood flow was assessed by phase contrast MRI, hepatic oxygen consumption by T2*, and plasma glucose, insulin, C-peptide, glucagon, GIP, GIPR-An, glucagon-like peptide 2, and bone metabolism markers by frequent blood sampling during all sessions. We found GIP(1-42) to stimulate blood flow in the superior mesenteric artery by ∼10% in the fasting state. Oral glucose alone increased mean blood flow in the superior mesenteric artery by ∼70% and portal vein by ∼40% of baseline. During oral glucose ingestion with concurrent infusion of GIPR-An, blood flow in the superior mesenteric artery was ∼22% lower. The hormone infusions did not affect blood flow in the hepatic artery and the celiac artery. Infusion of GIPR-An during oral glucose ingestion resulted in lower insulin secretion and higher levels of carboxy-terminal collagen crosslinks (bone resorption biomarker) compared with saline infusion, whereas glucagon levels were unaffected by both the injection of GIP and the GIPR-An infusions. We conclude that endogenous GIP increases splanchnic blood flow and contributes to postprandial intestinal hyperemia in healthy men. ARTICLE HIGHLIGHTS Administration of the gut hormone glucose-dependent insulinotropic polypeptide (GIP) increases splanchnic blood flow. We investigated the role of endogenous GIP in splanchnic blood flow regulation using a receptor antagonist in humans. Oral glucose ingestion increased blood flow in the superior mesenteric artery by ∼70%, and the increase was significantly lower during concurrent infusion of the GIP receptor antagonist. Thus, endogenous GIP contributed ∼22% of the postprandial increase in superior mesenteric artery blood flow. We have identified a novel physiological aspect of vascular biology related to the GIP receptor in humans. Treatments targeting the GIP receptors are likely to affect splanchnic blood flow.","PeriodicalId":11376,"journal":{"name":"Diabetes","volume":"22 5 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2337/db25-0149","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal hormones are essential for nutrient handling and regulation of glucose metabolism and may affect postprandial blood redistribution. In a randomized cross-over design in 10 healthy men, the involvement of glucose-dependent insulinotropic polypeptide (GIP) in splanchnic blood flow regulation was investigated using an infusion of GIP receptor antagonist (GIPR-An) GIP(3-30)NH2 during ingestion of oral glucose (75 g). In five separate sessions, we investigated GIP(1-42), GIPR-An with and without oral glucose, oral glucose alone, and a control saline infusion. Blood flow was assessed by phase contrast MRI, hepatic oxygen consumption by T2*, and plasma glucose, insulin, C-peptide, glucagon, GIP, GIPR-An, glucagon-like peptide 2, and bone metabolism markers by frequent blood sampling during all sessions. We found GIP(1-42) to stimulate blood flow in the superior mesenteric artery by ∼10% in the fasting state. Oral glucose alone increased mean blood flow in the superior mesenteric artery by ∼70% and portal vein by ∼40% of baseline. During oral glucose ingestion with concurrent infusion of GIPR-An, blood flow in the superior mesenteric artery was ∼22% lower. The hormone infusions did not affect blood flow in the hepatic artery and the celiac artery. Infusion of GIPR-An during oral glucose ingestion resulted in lower insulin secretion and higher levels of carboxy-terminal collagen crosslinks (bone resorption biomarker) compared with saline infusion, whereas glucagon levels were unaffected by both the injection of GIP and the GIPR-An infusions. We conclude that endogenous GIP increases splanchnic blood flow and contributes to postprandial intestinal hyperemia in healthy men. ARTICLE HIGHLIGHTS Administration of the gut hormone glucose-dependent insulinotropic polypeptide (GIP) increases splanchnic blood flow. We investigated the role of endogenous GIP in splanchnic blood flow regulation using a receptor antagonist in humans. Oral glucose ingestion increased blood flow in the superior mesenteric artery by ∼70%, and the increase was significantly lower during concurrent infusion of the GIP receptor antagonist. Thus, endogenous GIP contributed ∼22% of the postprandial increase in superior mesenteric artery blood flow. We have identified a novel physiological aspect of vascular biology related to the GIP receptor in humans. Treatments targeting the GIP receptors are likely to affect splanchnic blood flow.
期刊介绍:
Diabetes is a scientific journal that publishes original research exploring the physiological and pathophysiological aspects of diabetes mellitus. We encourage submissions of manuscripts pertaining to laboratory, animal, or human research, covering a wide range of topics. Our primary focus is on investigative reports investigating various aspects such as the development and progression of diabetes, along with its associated complications. We also welcome studies delving into normal and pathological pancreatic islet function and intermediary metabolism, as well as exploring the mechanisms of drug and hormone action from a pharmacological perspective. Additionally, we encourage submissions that delve into the biochemical and molecular aspects of both normal and abnormal biological processes.
However, it is important to note that we do not publish studies relating to diabetes education or the application of accepted therapeutic and diagnostic approaches to patients with diabetes mellitus. Our aim is to provide a platform for research that contributes to advancing our understanding of the underlying mechanisms and processes of diabetes.