Hyperspectral imaging has a limited ability to remotely sense the onset of beech bark disease

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Guillaume Tougas, Christine I. B. Wallis, Etienne Laliberté, Mark Vellend
{"title":"Hyperspectral imaging has a limited ability to remotely sense the onset of beech bark disease","authors":"Guillaume Tougas, Christine I. B. Wallis, Etienne Laliberté, Mark Vellend","doi":"10.1002/rse2.70013","DOIUrl":null,"url":null,"abstract":"Insect and pathogen outbreaks have a major impact on northern forest ecosystems. Even for pathogens that have been present in a region for decades, such as beech bark disease (BBD), new waves of tree mortality are expected. Hence, there is a need for innovative approaches to monitor disease advancement in real time. Here, we test whether airborne hyperspectral imaging – involving data from 344 wavelengths in the visible, near infrared (NIR) and short‐wave infrared (SWIR) – can be used to assess beech bark disease severity in southern Quebec, Canada. Field data on disease severity were linked to airborne hyperspectral data for individual beech crowns. Partial least‐squares regression (PLSR) models using airborne imaging spectroscopy data predicted a small proportion of the variance in beech bark disease severity: the best model had an <jats:italic>R</jats:italic><jats:sup>2</jats:sup> of only 0.09. Wavelengths with the strongest contributions were from the red‐edge region (~715 nm) and the SWIR (~1287 nm), which may suggest mediation by canopy greenness, water content, and canopy architecture. Similar models using hyperspectral data taken directly on individual leaves had no explanatory power (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0). In addition, airborne and leaf‐level hyperspectral datasets were uncorrelated. The failure of leaf‐level models suggests that canopy structure was likely responsible for the limited predictive ability of the airborne model. Somewhat better performance in predicting disease severity was found using common band ratios for canopy greenness assessment (e.g., the Green Normalized Difference Vegetation Index, gNDVI, and the Normalized Phaeophytinization Index, NPQI); these variables explained up to 19% of the variation in disease severity. Overall, we argue that the complexity of hyperspectral data is not necessary for assessing BBD spread and that spectral data in general may not provide an efficient means of improving BBD monitoring on a larger scale.","PeriodicalId":21132,"journal":{"name":"Remote Sensing in Ecology and Conservation","volume":"41 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing in Ecology and Conservation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rse2.70013","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Insect and pathogen outbreaks have a major impact on northern forest ecosystems. Even for pathogens that have been present in a region for decades, such as beech bark disease (BBD), new waves of tree mortality are expected. Hence, there is a need for innovative approaches to monitor disease advancement in real time. Here, we test whether airborne hyperspectral imaging – involving data from 344 wavelengths in the visible, near infrared (NIR) and short‐wave infrared (SWIR) – can be used to assess beech bark disease severity in southern Quebec, Canada. Field data on disease severity were linked to airborne hyperspectral data for individual beech crowns. Partial least‐squares regression (PLSR) models using airborne imaging spectroscopy data predicted a small proportion of the variance in beech bark disease severity: the best model had an R2 of only 0.09. Wavelengths with the strongest contributions were from the red‐edge region (~715 nm) and the SWIR (~1287 nm), which may suggest mediation by canopy greenness, water content, and canopy architecture. Similar models using hyperspectral data taken directly on individual leaves had no explanatory power (R2 = 0). In addition, airborne and leaf‐level hyperspectral datasets were uncorrelated. The failure of leaf‐level models suggests that canopy structure was likely responsible for the limited predictive ability of the airborne model. Somewhat better performance in predicting disease severity was found using common band ratios for canopy greenness assessment (e.g., the Green Normalized Difference Vegetation Index, gNDVI, and the Normalized Phaeophytinization Index, NPQI); these variables explained up to 19% of the variation in disease severity. Overall, we argue that the complexity of hyperspectral data is not necessary for assessing BBD spread and that spectral data in general may not provide an efficient means of improving BBD monitoring on a larger scale.
高光谱成像对山毛榉树皮疾病的远程感知能力有限
昆虫和病原体的爆发对北方森林生态系统有重大影响。即使是在一个地区已经存在了几十年的病原体,如山毛榉树皮病(BBD),预计也会出现新的树木死亡浪潮。因此,需要创新的方法来实时监测疾病进展。在这里,我们测试了航空高光谱成像是否可以用于评估加拿大魁北克南部山毛榉树皮疾病的严重程度,该成像涉及可见光、近红外(NIR)和短波红外(SWIR)的344个波长的数据。疾病严重程度的实地数据与单个山毛榉冠的空中高光谱数据相关联。使用航空成像光谱数据的偏最小二乘回归(PLSR)模型预测了山毛榉树皮疾病严重程度的一小部分方差:最佳模型的R2仅为0.09。贡献最大的波长来自红边区(~715 nm)和SWIR区(~1287 nm),这可能与冠层绿度、含水量和冠层结构有关。利用单叶直接采集的高光谱数据建立的类似模型没有解释力(R2 = 0)。此外,航空和叶片水平的高光谱数据集不相关。叶片水平模型的失败表明,冠层结构可能是机载模型预测能力有限的原因。在预测疾病严重程度方面,使用冠层绿度评估的共同频带比率(例如,绿色归一化差异植被指数,gNDVI和归一化褐藻化指数,NPQI)具有更好的性能;这些变量解释了高达19%的疾病严重程度差异。总的来说,我们认为高光谱数据的复杂性对于评估BBD传播是不必要的,并且光谱数据通常可能无法提供更大规模改善BBD监测的有效手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing in Ecology and Conservation
Remote Sensing in Ecology and Conservation Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
9.80
自引率
5.50%
发文量
69
审稿时长
18 weeks
期刊介绍: emote Sensing in Ecology and Conservation provides a forum for rapid, peer-reviewed publication of novel, multidisciplinary research at the interface between remote sensing science and ecology and conservation. The journal prioritizes findings that advance the scientific basis of ecology and conservation, promoting the development of remote-sensing based methods relevant to the management of land use and biological systems at all levels, from populations and species to ecosystems and biomes. The journal defines remote sensing in its broadest sense, including data acquisition by hand-held and fixed ground-based sensors, such as camera traps and acoustic recorders, and sensors on airplanes and satellites. The intended journal’s audience includes ecologists, conservation scientists, policy makers, managers of terrestrial and aquatic systems, remote sensing scientists, and students. Remote Sensing in Ecology and Conservation is a fully open access journal from Wiley and the Zoological Society of London. Remote sensing has enormous potential as to provide information on the state of, and pressures on, biological diversity and ecosystem services, at multiple spatial and temporal scales. This new publication provides a forum for multidisciplinary research in remote sensing science, ecological research and conservation science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信