Visual Inquiry Toolkit - An Integrated Approach for Exploring and Interpreting Space-Time, Multivariate Patterns.

AutoCarto research symposium Pub Date : 2006-06-01
Jin Chen, Alan M MacEachren, Diansheng Guo
{"title":"Visual Inquiry Toolkit - An Integrated Approach for Exploring and Interpreting Space-Time, Multivariate Patterns.","authors":"Jin Chen, Alan M MacEachren, Diansheng Guo","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>While many datasets carry geographic and temporal references, our ability to analyze these datasets lags behind our ability to collect them because of the challenges posed by both data complexity and scalability issues. This study develops a visual analytics approach that integrates human knowledge and judgments with visual, computational, and cartographic methods to support the application of visual analytics to relatively large spatio-temporal, multivariate datasets. Specifically, a variety of methods are employed for data clustering, pattern searching, information visualization and synthesis. By combining both human and machine strengths, this approach has a better chance to discover novel, relevant and potentially useful information that is difficult to detect by any method used in isolation. We demonstrate the effectiveness of the approach by applying the Visual Inquiry Toolkit we developed to analysis of a dataset containing geographically referenced, time-varying and multivariate data for U.S. technology industries.</p>","PeriodicalId":91213,"journal":{"name":"AutoCarto research symposium","volume":"2006 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2006-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AutoCarto research symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While many datasets carry geographic and temporal references, our ability to analyze these datasets lags behind our ability to collect them because of the challenges posed by both data complexity and scalability issues. This study develops a visual analytics approach that integrates human knowledge and judgments with visual, computational, and cartographic methods to support the application of visual analytics to relatively large spatio-temporal, multivariate datasets. Specifically, a variety of methods are employed for data clustering, pattern searching, information visualization and synthesis. By combining both human and machine strengths, this approach has a better chance to discover novel, relevant and potentially useful information that is difficult to detect by any method used in isolation. We demonstrate the effectiveness of the approach by applying the Visual Inquiry Toolkit we developed to analysis of a dataset containing geographically referenced, time-varying and multivariate data for U.S. technology industries.

可视化查询工具包-探索和解释时空、多元模式的集成方法。
虽然许多数据集包含地理和时间参考,但由于数据复杂性和可扩展性问题带来的挑战,我们分析这些数据集的能力落后于我们收集它们的能力。本研究开发了一种视觉分析方法,将人类的知识和判断与视觉、计算和制图方法相结合,以支持将视觉分析应用于相对较大的时空、多元数据集。具体而言,采用了多种方法进行数据聚类、模式搜索、信息可视化和综合。通过结合人和机器的优势,这种方法有更好的机会发现任何单独使用的方法都难以发现的新颖、相关和潜在有用的信息。我们通过应用我们开发的可视化查询工具包来分析包含地理参考、时变和多变量数据的美国技术行业数据集,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信