Uncertainty Quantification for Conditional Treatment Effect Estimation under Dynamic Treatment Regimes.

Leon Deng, Hong Xiong, Feng Wu, Sanyam Kapoor, Soumya Ghosh, Zach Shahn, Li-Wei H Lehman
{"title":"Uncertainty Quantification for Conditional Treatment Effect Estimation under Dynamic Treatment Regimes.","authors":"Leon Deng, Hong Xiong, Feng Wu, Sanyam Kapoor, Soumya Ghosh, Zach Shahn, Li-Wei H Lehman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In medical decision-making, clinicians must choose between different time-varying treatment strategies. Counterfactual prediction via g-computation enables comparison of alternative outcome distributions under such treatment strategies. While deep learning can better model high-dimensional data with complex temporal dependencies, incorporating model uncertainty into predicted conditional counterfactual distributions remains challenging. We propose a principled approach to model uncertainty in deep learning implementations of g-computations using approximate Bayesian posterior predictive distributions of counterfactual outcomes via variational dropout and deep ensembles. We evaluate these methods by comparing their counterfactual predictive calibration and performance in decision-making tasks, using two simulated datasets from mechanistic models and a real-world sepsis dataset. Our findings suggest that the proposed uncertainty quantification approach improves both calibration and decision-making performance, particularly in minimizing risks of worst-case adverse clinical outcomes under alternative dynamic treatment regimes. To our knowledge, this is the first work to propose and compare multiple uncertainty quantification methods in machine learning models of g-computation in estimating conditional treatment effects under dynamic treatment regimes.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"259 ","pages":"248-266"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In medical decision-making, clinicians must choose between different time-varying treatment strategies. Counterfactual prediction via g-computation enables comparison of alternative outcome distributions under such treatment strategies. While deep learning can better model high-dimensional data with complex temporal dependencies, incorporating model uncertainty into predicted conditional counterfactual distributions remains challenging. We propose a principled approach to model uncertainty in deep learning implementations of g-computations using approximate Bayesian posterior predictive distributions of counterfactual outcomes via variational dropout and deep ensembles. We evaluate these methods by comparing their counterfactual predictive calibration and performance in decision-making tasks, using two simulated datasets from mechanistic models and a real-world sepsis dataset. Our findings suggest that the proposed uncertainty quantification approach improves both calibration and decision-making performance, particularly in minimizing risks of worst-case adverse clinical outcomes under alternative dynamic treatment regimes. To our knowledge, this is the first work to propose and compare multiple uncertainty quantification methods in machine learning models of g-computation in estimating conditional treatment effects under dynamic treatment regimes.

动态处理条件下条件处理效果评估的不确定性量化。
在医疗决策中,临床医生必须在不同的时变治疗策略之间做出选择。通过g计算的反事实预测可以比较这种治疗策略下的不同结果分布。虽然深度学习可以更好地为具有复杂时间依赖性的高维数据建模,但将模型不确定性纳入预测的条件反事实分布仍然具有挑战性。我们提出了一种有原则的方法来模拟g计算的深度学习实现中的不确定性,使用通过变分dropout和深度集成的反事实结果的近似贝叶斯后验预测分布。我们通过比较它们在决策任务中的反事实预测校准和性能来评估这些方法,使用来自机制模型和真实脓毒症数据集的两个模拟数据集。我们的研究结果表明,所提出的不确定性量化方法提高了校准和决策性能,特别是在最大限度地降低了在替代动态治疗方案下最坏的不良临床结果的风险。据我们所知,这是第一次提出和比较在动态处理制度下估计条件处理效果的g计算机器学习模型中的多种不确定性量化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信