QID2: An Image-Conditioned Diffusion Model for Q-space Up-sampling of DWI Data.

Zijian Chen, Jueqi Wang, Archana Venkataraman
{"title":"QID<sup>2</sup>: An Image-Conditioned Diffusion Model for <i>Q</i>-space Up-sampling of DWI Data.","authors":"Zijian Chen, Jueqi Wang, Archana Venkataraman","doi":"10.1007/978-3-031-86920-4_11","DOIUrl":null,"url":null,"abstract":"<p><p>We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID<sup>2</sup>, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID<sup>2</sup> on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID<sup>2</sup> to reconstruct the missing high angular resolution samples. We compare QID<sup>2</sup> with two state-of-the-art GAN models. Our results demonstrate that QID<sup>2</sup> not only achieves higher-quality generated images, but it consistently outperforms state-of-the-art baseline methods in downstream tensor estimation across multiple metrics and in generalizing to downsampling scenario during testing. Taken together, this study highlights the potential of diffusion models, and QID<sup>2</sup> in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.</p>","PeriodicalId":72661,"journal":{"name":"Computational diffusion MRI : MICCAI Workshop","volume":"15171 ","pages":"119-131"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational diffusion MRI : MICCAI Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-86920-4_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an image-conditioned diffusion model to estimate high angular resolution diffusion weighted imaging (DWI) from a low angular resolution acquisition. Our model, which we call QID2, takes as input a set of low angular resolution DWI data and uses this information to estimate the DWI data associated with a target gradient direction. We leverage a U-Net architecture with cross-attention to preserve the positional information of the reference images, further guiding the target image generation. We train and evaluate QID2 on single-shell DWI samples curated from the Human Connectome Project (HCP) dataset. Specifically, we sub-sample the HCP gradient directions to produce low angular resolution DWI data and train QID2 to reconstruct the missing high angular resolution samples. We compare QID2 with two state-of-the-art GAN models. Our results demonstrate that QID2 not only achieves higher-quality generated images, but it consistently outperforms state-of-the-art baseline methods in downstream tensor estimation across multiple metrics and in generalizing to downsampling scenario during testing. Taken together, this study highlights the potential of diffusion models, and QID2 in particular, for q-space up-sampling, thus offering a promising toolkit for clinical and research applications.

QID2: DWI数据q空间上采样的图像条件扩散模型。
我们提出了一个图像条件扩散模型,从低角分辨率采集估计高角分辨率扩散加权成像(DWI)。我们称之为QID2的模型将一组低角度分辨率的DWI数据作为输入,并使用该信息来估计与目标梯度方向相关的DWI数据。我们利用交叉关注的U-Net架构来保留参考图像的位置信息,进一步指导目标图像的生成。我们在人类连接组项目(Human Connectome Project, HCP)数据集中的单壳DWI样本上训练和评估QID2。具体来说,我们对HCP梯度方向进行子采样以产生低角分辨率DWI数据,并训练QID2来重建缺失的高角分辨率样本。我们将QID2与两种最先进的GAN模型进行比较。我们的研究结果表明,QID2不仅实现了更高质量的生成图像,而且在跨多个指标的下游张量估计以及在测试期间推广到下采样场景时,它始终优于最先进的基线方法。综上所述,本研究强调了扩散模型,特别是QID2在q空间上采样方面的潜力,从而为临床和研究应用提供了一个有前途的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信