Wesley Pietsch, Tom Schumann, Marc Safferthal, Niklas Geue, Kevin Pagel, Michael Götze
{"title":"The Road Toward Nanopore Sequencing of Glycosaminoglycans.","authors":"Wesley Pietsch, Tom Schumann, Marc Safferthal, Niklas Geue, Kevin Pagel, Michael Götze","doi":"10.1007/164_2025_750","DOIUrl":null,"url":null,"abstract":"<p><p>Nanopores have emerged as a powerful, label-free technique for single molecule analysis, offering high sensitivity and rapid analysis capabilities. Originally developed for DNA sequencing, nanopores have shown promise not only for the characterization of other biomolecules, such as RNA, proteins, and glycans but also of small inorganic compounds, such as nanoparticles. Glycosaminoglycans (GAGs) are a linear, highly charged subclass of glycans, which play essential roles in cell signaling, tissue development, and inflammation processes. The immense structural complexity of GAGs involving unique sulfation patterns renders their analysis challenging. This chapter provides a comprehensive overview on the application of biological and solid-state nanopores for the analysis of GAGs.</p>","PeriodicalId":12859,"journal":{"name":"Handbook of experimental pharmacology","volume":" ","pages":"109-130"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of experimental pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/164_2025_750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Nanopores have emerged as a powerful, label-free technique for single molecule analysis, offering high sensitivity and rapid analysis capabilities. Originally developed for DNA sequencing, nanopores have shown promise not only for the characterization of other biomolecules, such as RNA, proteins, and glycans but also of small inorganic compounds, such as nanoparticles. Glycosaminoglycans (GAGs) are a linear, highly charged subclass of glycans, which play essential roles in cell signaling, tissue development, and inflammation processes. The immense structural complexity of GAGs involving unique sulfation patterns renders their analysis challenging. This chapter provides a comprehensive overview on the application of biological and solid-state nanopores for the analysis of GAGs.
期刊介绍:
The Handbook of Experimental Pharmacology is one of the most authoritative and influential book series in pharmacology. It provides critical and comprehensive discussions of the most significant areas of pharmacological research, written by leading international authorities. Each volume in the series represents the most informative and contemporary account of its subject available, making it an unrivalled reference source.