Kinetic Modeling and Assessment of a CO2 Nanobubble-Enhanced Hydrate-Based Sustainable Water Recovery from Industrial Effluents.

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Journal of Sustainable Metallurgy Pub Date : 2025-01-01 Epub Date: 2025-04-22 DOI:10.1007/s40831-025-01081-8
Seyed Mohammad Montazeri, Nicolas Kalogerakis, Georgios Kolliopoulos
{"title":"Kinetic Modeling and Assessment of a CO<sub>2</sub> Nanobubble-Enhanced Hydrate-Based Sustainable Water Recovery from Industrial Effluents.","authors":"Seyed Mohammad Montazeri, Nicolas Kalogerakis, Georgios Kolliopoulos","doi":"10.1007/s40831-025-01081-8","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates the effectiveness of CO<sub>2</sub> nanobubble-enhanced hydrate-based desalination (HBD) to treat industrial effluents from the mining and metals industry. Testing was conducted in a high-pressure reactor apparatus that employed CO<sub>2</sub> as the gas hydrate former at 274.15 K and 3.58 MPa. CO<sub>2</sub> nanobubbles (NBs) were used to promote hydrate formation, aiming to streamline an HBD process without separation steps for the additives/chemicals used. Due to the limited studies on hydrate formation in sulfate-containing aqueous solutions, this research focused on the kinetics of hydrate formation in varying concentrations of Na<sub>2</sub>SO<sub>4</sub> and MgSO<sub>4</sub> (0.1 and 0.5 M). The results showed that CO<sub>2</sub> NBs significantly enhanced hydrate formation in both Na<sub>2</sub>SO<sub>4</sub> and MgSO<sub>4</sub> solutions, with CO<sub>2</sub> consumption increasing by up to approximately 51% and 35%, respectively. Additionally, a kinetics study on a real effluent from the mining and metals industry showed that the presence of CO<sub>2</sub> NBs increased CO<sub>2</sub> consumption by around 20% after 180 min. This research also evaluated water recovery and desalination efficiency in a 3-stage HBD process applied to the effluent, the concentration of which exceeded the operating range of reverse osmosis. The results indicated an improvement in water recovery from 25.13 ± 2.04% to 40.16 ± 1.43% with CO<sub>2</sub> NBs, underscoring their effectiveness in treating highly saline water. Moreover, desalination efficiencies of 49.54 ± 2.39% and 42.03 ± 3.43% were achieved without and with CO<sub>2</sub> NBs, respectively. This study represents the successful demonstration of the efficient application of the CO<sub>2</sub> NBs-boosted HBD method to treat high-salinity effluents and recover clean water for reuse.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"11 2","pages":"1789-1801"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-025-01081-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluates the effectiveness of CO2 nanobubble-enhanced hydrate-based desalination (HBD) to treat industrial effluents from the mining and metals industry. Testing was conducted in a high-pressure reactor apparatus that employed CO2 as the gas hydrate former at 274.15 K and 3.58 MPa. CO2 nanobubbles (NBs) were used to promote hydrate formation, aiming to streamline an HBD process without separation steps for the additives/chemicals used. Due to the limited studies on hydrate formation in sulfate-containing aqueous solutions, this research focused on the kinetics of hydrate formation in varying concentrations of Na2SO4 and MgSO4 (0.1 and 0.5 M). The results showed that CO2 NBs significantly enhanced hydrate formation in both Na2SO4 and MgSO4 solutions, with CO2 consumption increasing by up to approximately 51% and 35%, respectively. Additionally, a kinetics study on a real effluent from the mining and metals industry showed that the presence of CO2 NBs increased CO2 consumption by around 20% after 180 min. This research also evaluated water recovery and desalination efficiency in a 3-stage HBD process applied to the effluent, the concentration of which exceeded the operating range of reverse osmosis. The results indicated an improvement in water recovery from 25.13 ± 2.04% to 40.16 ± 1.43% with CO2 NBs, underscoring their effectiveness in treating highly saline water. Moreover, desalination efficiencies of 49.54 ± 2.39% and 42.03 ± 3.43% were achieved without and with CO2 NBs, respectively. This study represents the successful demonstration of the efficient application of the CO2 NBs-boosted HBD method to treat high-salinity effluents and recover clean water for reuse.

Graphical abstract:

CO2纳米泡强化水合物基工业废水可持续回收的动力学建模与评价。
本研究评估了CO2纳米气泡强化水基脱盐(HBD)处理采矿和金属工业废水的有效性。实验在高压反应器装置上进行,实验温度为274.15 K,压力为3.58 MPa。二氧化碳纳米气泡(NBs)用于促进水合物的形成,旨在简化HBD过程,而无需使用添加剂/化学品的分离步骤。由于对含硫酸盐水溶液中水合物形成的研究有限,本研究主要关注不同浓度Na2SO4和MgSO4(0.1和0.5 M)下水合物形成的动力学。结果表明,在Na2SO4和MgSO4溶液中,CO2 NBs显著促进了水合物的形成,CO2消耗量分别增加了约51%和35%。此外,一项针对采矿和金属工业实际废水的动力学研究表明,二氧化碳NBs的存在使180分钟后的二氧化碳消耗量增加了约20%。该研究还评估了应用于废水的3阶段HBD工艺的水回收和脱盐效率,其浓度超过了反渗透的操作范围。结果表明,CO2 NBs对高盐水体的采收率由25.13±2.04%提高到40.16±1.43%,说明了CO2 NBs对高盐水体的处理效果。无CO2 NBs和有CO2 NBs的海水淡化效率分别为49.54±2.39%和42.03±3.43%。本研究成功展示了CO2 - nbs助推HBD法在处理高盐度废水和回收清洁水回用中的高效应用。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信