ASight: Fine-tuning Auto-Scheduling Optimizations for Model Deployment via Visual Analytics.

Laixin Xie, Chenyang Zhang, Ruofei Ma, Xingxing Xing, Wei Wan, Quan Li
{"title":"ASight: Fine-tuning Auto-Scheduling Optimizations for Model Deployment via Visual Analytics.","authors":"Laixin Xie, Chenyang Zhang, Ruofei Ma, Xingxing Xing, Wei Wan, Quan Li","doi":"10.1109/TVCG.2025.3574194","DOIUrl":null,"url":null,"abstract":"<p><p>Upon completing the design and training phases, deploying a deep learning model to specific hardware becomes necessary prior to its implementation in practical applications. To enhance the performance of the model, the developers must optimize it to decrease inference latency. Auto-scheduling, an automated approach that generates optimization schemes, offers a feasible option for large-scale auto-deployment. Nevertheless, the low-level code generated by auto-scheduling closely resembles hardware coding and may present challenges for human comprehension, thereby hindering future manual optimization efforts. In this study, we introduce ASight, a visual analytics system to assist engineers in identifying performance bottlenecks, comprehending the auto-generated low-level code, and obtaining insights from auto-scheduling optimizations. We develop a subgraph matching algorithm capable of identifying graph isomorphism among Intermediate Representations to track performance bottlenecks from low-level metrics to high-level computational graphs. To address the substantial profiling metrics involved in auto-scheduling and derive optimization design principles by summarizing commonalities among auto-scheduling optimizations, we propose an enhanced visualization for the large search space of auto-scheduling. We validate the effectiveness of ASight through two case studies, one focused on a local machine and the other on a data center, along with a quantitative experiment exploring optimization design principles.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3574194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Upon completing the design and training phases, deploying a deep learning model to specific hardware becomes necessary prior to its implementation in practical applications. To enhance the performance of the model, the developers must optimize it to decrease inference latency. Auto-scheduling, an automated approach that generates optimization schemes, offers a feasible option for large-scale auto-deployment. Nevertheless, the low-level code generated by auto-scheduling closely resembles hardware coding and may present challenges for human comprehension, thereby hindering future manual optimization efforts. In this study, we introduce ASight, a visual analytics system to assist engineers in identifying performance bottlenecks, comprehending the auto-generated low-level code, and obtaining insights from auto-scheduling optimizations. We develop a subgraph matching algorithm capable of identifying graph isomorphism among Intermediate Representations to track performance bottlenecks from low-level metrics to high-level computational graphs. To address the substantial profiling metrics involved in auto-scheduling and derive optimization design principles by summarizing commonalities among auto-scheduling optimizations, we propose an enhanced visualization for the large search space of auto-scheduling. We validate the effectiveness of ASight through two case studies, one focused on a local machine and the other on a data center, along with a quantitative experiment exploring optimization design principles.

ASight:通过可视化分析对模型部署进行微调自动调度优化。
在完成设计和训练阶段后,在实际应用中实施之前,有必要将深度学习模型部署到特定的硬件上。为了提高模型的性能,开发人员必须对其进行优化,以减少推理延迟。自动调度是一种自动生成优化方案的方法,为大规模自动部署提供了可行的选择。然而,由自动调度生成的低级代码与硬件编码非常相似,可能给人类的理解带来挑战,从而阻碍了未来的人工优化工作。在本研究中,我们介绍了ASight,一个可视化分析系统,以帮助工程师识别性能瓶颈,理解自动生成的低级代码,并从自动调度优化中获得见解。我们开发了一种子图匹配算法,能够识别中间表示之间的图同构,以跟踪从低级指标到高级计算图的性能瓶颈。为了解决自动调度中涉及的大量分析指标,并通过总结自动调度优化之间的共性得出优化设计原则,我们提出了一种增强的自动调度大搜索空间的可视化方法。我们通过两个案例研究来验证ASight的有效性,一个案例研究集中在本地机器上,另一个案例研究集中在数据中心上,以及一个探索优化设计原则的定量实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信