Structure versus composition: a comparative study across scales.

IF 3.1 3区 化学 Q2 CHEMISTRY, PHYSICAL
Yannicke Dauphin, Cedrik Lo, Gergely Németh, Christophe Sandt, Jean-Pierre Cuif
{"title":"Structure <i>versus</i> composition: a comparative study across scales.","authors":"Yannicke Dauphin, Cedrik Lo, Gergely Németh, Christophe Sandt, Jean-Pierre Cuif","doi":"10.1039/d5fd00012b","DOIUrl":null,"url":null,"abstract":"<p><p>Mollusk shells are composed of biominerals. While their mineral polymorphs are limited, their organic components number in the hundreds, if not thousands. Identifying these individual components is only the first step; understanding how they interact to form a shell remains an ongoing challenge. Infrared (IR) spectroscopy is a powerful technique for analyzing the structure and composition of these components while preserving their topographic relationships. This study employed three scales of observation and three samples: <i>Concholepas</i>, <i>Pinctada</i>, and cultivated pearls. Previously available data on their microstructure and compositions were utilized to explore potential correlations with results obtained from various techniques. IR analysis, being non-destructive, facilitates subsequent comparisons with other analytical methods such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Absorption Near Edge Structure (XANES), thanks to the precise localization of IR data. The findings reveal that data from earlier non-IR analyses align with results from new IR techniques, including Diffuse Reflectance Infrared Fourier Transform (DRIFT), Optical Photothermal Infrared Spectroscopy (O-PTIR), and Scattering-Type Scanning Near-Field Optical Microscopy (sSNOM). This concordance validates the application of these new IR methods for studying biogenic calcium carbonate. Furthermore, the high spatial resolution of O-PTIR and sSNOM enables detailed visualization of structural and compositional features. For instance, the techniques reveal the intricate inner structure of three-month-old pearls, the distribution of proteins, lipids, and sulphated sugars in <i>Concholepas</i>, and the nanoscale differences in the arrangement of nacre and prisms in <i>Pinctada</i>.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5fd00012b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mollusk shells are composed of biominerals. While their mineral polymorphs are limited, their organic components number in the hundreds, if not thousands. Identifying these individual components is only the first step; understanding how they interact to form a shell remains an ongoing challenge. Infrared (IR) spectroscopy is a powerful technique for analyzing the structure and composition of these components while preserving their topographic relationships. This study employed three scales of observation and three samples: Concholepas, Pinctada, and cultivated pearls. Previously available data on their microstructure and compositions were utilized to explore potential correlations with results obtained from various techniques. IR analysis, being non-destructive, facilitates subsequent comparisons with other analytical methods such as Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Absorption Near Edge Structure (XANES), thanks to the precise localization of IR data. The findings reveal that data from earlier non-IR analyses align with results from new IR techniques, including Diffuse Reflectance Infrared Fourier Transform (DRIFT), Optical Photothermal Infrared Spectroscopy (O-PTIR), and Scattering-Type Scanning Near-Field Optical Microscopy (sSNOM). This concordance validates the application of these new IR methods for studying biogenic calcium carbonate. Furthermore, the high spatial resolution of O-PTIR and sSNOM enables detailed visualization of structural and compositional features. For instance, the techniques reveal the intricate inner structure of three-month-old pearls, the distribution of proteins, lipids, and sulphated sugars in Concholepas, and the nanoscale differences in the arrangement of nacre and prisms in Pinctada.

结构与组成:跨音阶的比较研究。
软体动物的壳是由生物矿物质组成的。虽然它们的矿物多形态是有限的,但它们的有机成分即使没有数千种,也有数百种。识别这些单独的组件只是第一步;了解它们如何相互作用形成外壳仍然是一个持续的挑战。红外光谱是一种强大的技术,可以分析这些成分的结构和组成,同时保持它们的地形关系。本研究采用三种观察尺度和三种样品:孔珍珠、平珠珍珠和养殖珍珠。利用先前获得的有关其微观结构和成分的数据来探索与各种技术所得结果的潜在相关性。由于红外数据的精确定位,红外分析是非破坏性的,便于随后与其他分析方法(如飞行时间二次离子质谱法(ToF-SIMS)和x射线吸收近边缘结构(XANES))进行比较。研究结果表明,早期非红外分析的数据与新红外技术的结果一致,包括漫反射红外傅立叶变换(DRIFT)、光学光热红外光谱(O-PTIR)和散射型扫描近场光学显微镜(sSNOM)。这一一致性验证了这些新的红外方法在生物源性碳酸钙研究中的应用。此外,O-PTIR和sSNOM的高空间分辨率使结构和成分特征的详细可视化成为可能。例如,该技术揭示了3个月大的珍珠的复杂内部结构,孔雀鱼中蛋白质、脂质和硫酸糖的分布,以及平锥鱼珠层和棱镜排列的纳米级差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信