{"title":"Object Detection Based on CNN and Vision-Transformer: A Survey","authors":"Jinfeng Cao, Bo Peng, Mingzhong Gao, Haichun Hao, Xinfang Li, Hongwei Mou","doi":"10.1049/cvi2.70028","DOIUrl":null,"url":null,"abstract":"<p>Object detection is the most crucial and challenging task of computer vision and has been used in various fields in recent years, such as autonomous driving and industrial inspection. Traditional object detection methods are mainly based on the sliding windows and the handcrafted features, which have problems such as insufficient understanding of image features and low accuracy of detection. With the rapid advancements in deep learning, convolutional neural networks (CNNs) and vision transformers have become fundamental components in object detection models. These components are capable of learning more advanced and deeper image properties, leading to a transformational breakthrough in the performance of object detection. In this review, we comprehensively review the representative object detection models from deep learning periods, tracing their architectural shifts and technological breakthroughs. Furthermore, we discuss key challenges and promising research directions in the object detection. This review aims to provide a comprehensive foundation for practitioners to enhance their understanding of object detection technologies.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.70028","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.70028","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Object detection is the most crucial and challenging task of computer vision and has been used in various fields in recent years, such as autonomous driving and industrial inspection. Traditional object detection methods are mainly based on the sliding windows and the handcrafted features, which have problems such as insufficient understanding of image features and low accuracy of detection. With the rapid advancements in deep learning, convolutional neural networks (CNNs) and vision transformers have become fundamental components in object detection models. These components are capable of learning more advanced and deeper image properties, leading to a transformational breakthrough in the performance of object detection. In this review, we comprehensively review the representative object detection models from deep learning periods, tracing their architectural shifts and technological breakthroughs. Furthermore, we discuss key challenges and promising research directions in the object detection. This review aims to provide a comprehensive foundation for practitioners to enhance their understanding of object detection technologies.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf