{"title":"Hyperspectral Image Few-Shot Classification Based on Spatial–Spectral Information Complementation and Multilatent Domain Generalization","authors":"Qianhao Yu;Yong Wang","doi":"10.1109/JSTARS.2025.3565894","DOIUrl":null,"url":null,"abstract":"Hyperspectral image (HSI) few-shot classification aims to classify HSI samples of novel categories with limited training HSI samples of base categories. However, current methods suffer from two issues: first, ignoring the complementary relationship between spatial and spectral information; and second, performance degradation on base categories due to excessive focus on novel categories. This article proposes a spatial–spectral information complementation and multilatent domain generalization-based framework (SIM). Specifically, given samples of base (novel) categories, a spatial–spectral feature extraction network is designed to extract their spatial–spectral features, which includes two steps. First, multiple spatial–spectral information complementation modules (SSICs) are stacked to extract the complementary features with different scales. Note that each SSIC extracts features with spatial and spectral information, and adopts a spatial–spectral information transmission unit to cross-transmit spatial and spectral information between these two types of features, thus achieving information complementation. Second, a multiscale feature fusion module is utilized to calculate the classification influence scores of the multiscale complementary features to perform layer-by-layer feature fusion, thus obtaining spatial–spectral features. Afterward, the spatial–spectral features are fed into a classification head to obtain the classification results. During training, a multilatent domain generalization network (MLDGN) is designed, which iteratively assigns pseudodomain labels to all samples, and calculates the sample discrimination loss. SIM combines the sample discrimination loss with the classification losses for training. Thus, SIM can extract spatial–spectral features with domain invariance, alleviating the performance degradation on base categories. Extensive results on four HSI datasets demonstrate that SIM outperforms state-of-the-art methods.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"13212-13224"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980625","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980625/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Hyperspectral image (HSI) few-shot classification aims to classify HSI samples of novel categories with limited training HSI samples of base categories. However, current methods suffer from two issues: first, ignoring the complementary relationship between spatial and spectral information; and second, performance degradation on base categories due to excessive focus on novel categories. This article proposes a spatial–spectral information complementation and multilatent domain generalization-based framework (SIM). Specifically, given samples of base (novel) categories, a spatial–spectral feature extraction network is designed to extract their spatial–spectral features, which includes two steps. First, multiple spatial–spectral information complementation modules (SSICs) are stacked to extract the complementary features with different scales. Note that each SSIC extracts features with spatial and spectral information, and adopts a spatial–spectral information transmission unit to cross-transmit spatial and spectral information between these two types of features, thus achieving information complementation. Second, a multiscale feature fusion module is utilized to calculate the classification influence scores of the multiscale complementary features to perform layer-by-layer feature fusion, thus obtaining spatial–spectral features. Afterward, the spatial–spectral features are fed into a classification head to obtain the classification results. During training, a multilatent domain generalization network (MLDGN) is designed, which iteratively assigns pseudodomain labels to all samples, and calculates the sample discrimination loss. SIM combines the sample discrimination loss with the classification losses for training. Thus, SIM can extract spatial–spectral features with domain invariance, alleviating the performance degradation on base categories. Extensive results on four HSI datasets demonstrate that SIM outperforms state-of-the-art methods.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.