Emiliano De Santis, Thomas Mandl, Jocky C. K. Kung, Khon Huynh, Steven Daly, Lorenza A. D’Alessandro, Luke MacAleese, Charlotte Uetrecht, Erik Marklund, Carl Caleman
{"title":"Structural stability of chromophore-grafted Ubiquitin mutants in vacuum.","authors":"Emiliano De Santis, Thomas Mandl, Jocky C. K. Kung, Khon Huynh, Steven Daly, Lorenza A. D’Alessandro, Luke MacAleese, Charlotte Uetrecht, Erik Marklund, Carl Caleman","doi":"10.1039/d5cp01297j","DOIUrl":null,"url":null,"abstract":"Structural biology is witnessing a transformative era with gas-phase techniques such as native mass spectrometry (MS), ion mobility, and single-particle imaging (SPI) emerging as critical tools for studying biomolecular assemblies like protein capsids in their native states. SPI with X-ray free- electron lasers has the potential to allow for capturing atomic-resolution structures of proteins without crystallization. However, determining particle orientation during exposure remains a major challenge, compounded by the heterogeneity of the protein complexes. Gas-phase Förster resonance energy transfer (FRET) offers a promising solution to assess alignment-induced structural perturbations, providing insights into the stability of the tertiary structure under various activation methods. This study employs molecular dynamics (MD) simulations to explore chromophore integration’s effect on ubiquitin’s structure and alignment properties in vacuum. Ubiquitin serves as an ideal model due to its small size, well-characterized properties, and computational simplicity. By investigating chromophores placement, we identified optimal sites for monitoring gas-phase denaturation and unfolding processes, advancing SPI applications and a broader understanding of protein stability in the gas-phase.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"41 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cp01297j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Structural biology is witnessing a transformative era with gas-phase techniques such as native mass spectrometry (MS), ion mobility, and single-particle imaging (SPI) emerging as critical tools for studying biomolecular assemblies like protein capsids in their native states. SPI with X-ray free- electron lasers has the potential to allow for capturing atomic-resolution structures of proteins without crystallization. However, determining particle orientation during exposure remains a major challenge, compounded by the heterogeneity of the protein complexes. Gas-phase Förster resonance energy transfer (FRET) offers a promising solution to assess alignment-induced structural perturbations, providing insights into the stability of the tertiary structure under various activation methods. This study employs molecular dynamics (MD) simulations to explore chromophore integration’s effect on ubiquitin’s structure and alignment properties in vacuum. Ubiquitin serves as an ideal model due to its small size, well-characterized properties, and computational simplicity. By investigating chromophores placement, we identified optimal sites for monitoring gas-phase denaturation and unfolding processes, advancing SPI applications and a broader understanding of protein stability in the gas-phase.
期刊介绍:
Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions.
The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.