Yuanyuan Hou, Boyang Lv, Junbao Du, Min Ye, Hongfang Jin, Yang Yi, Yaqian Huang
{"title":"Sulfide regulation and catabolism in health and disease","authors":"Yuanyuan Hou, Boyang Lv, Junbao Du, Min Ye, Hongfang Jin, Yang Yi, Yaqian Huang","doi":"10.1038/s41392-025-02231-w","DOIUrl":null,"url":null,"abstract":"<p>The metabolic pathway of sulfur-containing amino acids in organisms begins with methionine, which is metabolized to produce important sulfur-containing biomolecules such as adenosylmethionine, adenosylhomocysteine, homocysteine, cystine, and hydrogen sulfide (H<sub>2</sub>S). These sulfur-containing biomolecules play a wide range of physiological roles in the body, including anti-inflammation, antioxidant stress, DNA methylation, protein synthesis, etc., which are essential for maintaining cellular function and overall health. In contrast, dysregulation of the metabolic pathway of sulfur-containing amino acids leads to abnormal levels of sulfur-containing biomolecules, which produce a range of pathological consequences in multiple systems of the body, such as neurodegenerative diseases, cardiovascular diseases, and cancer. This review traces the milestones in the development of these sulfur-containing biomolecules from their initial discovery to their clinical applications and describes in detail the structure, physiochemical properties, metabolism, sulfide signaling pathway, physiopathological functions, and assays of sulfur-containing biomolecules. In addition, the paper also explores the regulatory role and mechanism of sulfur-containing biomolecules on cardiovascular diseases, liver diseases, neurological diseases, metabolic diseases and tumors. The focus is placed on donors of sulfur-containing biological macromolecule metabolites, small-molecule drug screening targeting H<sub>2</sub>S-producing enzymes, and the latest advancements in preclinical and clinical research related to hydrogen sulfide, including clinical trials and FDA-approved drugs. Additionally, an overview of future research directions in this field is provided. The aim is to enhance the understanding of the complex physiological and pathological roles of sulfur-containing biomolecules and to offer insights into developing effective therapeutic strategies for diseases associated with dysregulated sulfur-containing amino acid metabolism.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"19 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-025-02231-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The metabolic pathway of sulfur-containing amino acids in organisms begins with methionine, which is metabolized to produce important sulfur-containing biomolecules such as adenosylmethionine, adenosylhomocysteine, homocysteine, cystine, and hydrogen sulfide (H2S). These sulfur-containing biomolecules play a wide range of physiological roles in the body, including anti-inflammation, antioxidant stress, DNA methylation, protein synthesis, etc., which are essential for maintaining cellular function and overall health. In contrast, dysregulation of the metabolic pathway of sulfur-containing amino acids leads to abnormal levels of sulfur-containing biomolecules, which produce a range of pathological consequences in multiple systems of the body, such as neurodegenerative diseases, cardiovascular diseases, and cancer. This review traces the milestones in the development of these sulfur-containing biomolecules from their initial discovery to their clinical applications and describes in detail the structure, physiochemical properties, metabolism, sulfide signaling pathway, physiopathological functions, and assays of sulfur-containing biomolecules. In addition, the paper also explores the regulatory role and mechanism of sulfur-containing biomolecules on cardiovascular diseases, liver diseases, neurological diseases, metabolic diseases and tumors. The focus is placed on donors of sulfur-containing biological macromolecule metabolites, small-molecule drug screening targeting H2S-producing enzymes, and the latest advancements in preclinical and clinical research related to hydrogen sulfide, including clinical trials and FDA-approved drugs. Additionally, an overview of future research directions in this field is provided. The aim is to enhance the understanding of the complex physiological and pathological roles of sulfur-containing biomolecules and to offer insights into developing effective therapeutic strategies for diseases associated with dysregulated sulfur-containing amino acid metabolism.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.