Jingjing Wu, Hui Wang, Huaquan Fang, Kevin C. Wang, Deborin Ghosh, Valerio Fasano, Adam Noble, Varinder K. Aggarwal
{"title":"Persistent Boryl Radicals as Highly Reducing Photoredox Catalysts for Debrominative Borylations","authors":"Jingjing Wu, Hui Wang, Huaquan Fang, Kevin C. Wang, Deborin Ghosh, Valerio Fasano, Adam Noble, Varinder K. Aggarwal","doi":"10.1021/jacs.5c03864","DOIUrl":null,"url":null,"abstract":"Organic free radicals are commonly perceived to be highly reactive species with short lifetimes, yet there are many examples that defy this convention by displaying remarkable stability. Although these persistent radicals can be relatively unreactive in their ground states, photoexcitation can generate highly reactive excited states. Despite this, they have found limited application as reagents or catalysts in photochemical reactions. Here we report the identification of persistent boryl-bipyridine radicals that function as highly reducing photoredox catalysts. These radicals, which are generated by simply mixing a bipyridine with a diboron reagent, were found to possess excited state reduction potentials that rival the most powerful photoreductants reported to date. We show that this class of doublet state photoredox catalyst can promote borylations of alkyl bromides and various other transformations.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"8 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c03864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic free radicals are commonly perceived to be highly reactive species with short lifetimes, yet there are many examples that defy this convention by displaying remarkable stability. Although these persistent radicals can be relatively unreactive in their ground states, photoexcitation can generate highly reactive excited states. Despite this, they have found limited application as reagents or catalysts in photochemical reactions. Here we report the identification of persistent boryl-bipyridine radicals that function as highly reducing photoredox catalysts. These radicals, which are generated by simply mixing a bipyridine with a diboron reagent, were found to possess excited state reduction potentials that rival the most powerful photoreductants reported to date. We show that this class of doublet state photoredox catalyst can promote borylations of alkyl bromides and various other transformations.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.