{"title":"Clinical approaches to overcome PARP inhibitor resistance","authors":"Yutian Zou, Hanqi Zhang, Pangzhou Chen, Jiayi Tang, Siwei Yang, Christophe Nicot, Ziyun Guan, Xing Li, Hailin Tang","doi":"10.1186/s12943-025-02355-1","DOIUrl":null,"url":null,"abstract":"PARP inhibitors have profoundly changed treatment options for cancers with homologous recombination repair defects, especially those carrying BRCA1/2 mutations. However, the development of resistance to these inhibitors presents a significant clinical challenge as it limits long-term effectiveness. This review provides an overview of the current understanding of resistance mechanisms to PARP inhibitors and explores strategies to overcome these challenges. We discuss the basis of synthetic lethality induced by PARP inhibitors and detail diverse resistance mechanisms affecting PARP inhibitors, including homologous recombination restoration, reduced PARP trapping, enhanced drug efflux, and replication fork stabilization. The review then considers clinical approaches to combat resistance, focusing on combination therapies with immune checkpoint inhibitors, DNA damage response inhibitors, and epigenetic drugs. We also highlight ongoing clinical trials and potential biomarkers for predicting treatment response and resistance. The review concludes by outlining future research directions, emphasizing the need for longitudinal studies, advanced resistance monitoring technologies, and the development of novel combination strategies. By tackling PARP inhibitor resistance, this review seeks to aid in the development of more effective cancer therapies, with the potential to improve outcomes for patients with homologous recombination-deficient tumors.","PeriodicalId":19000,"journal":{"name":"Molecular Cancer","volume":"82 1","pages":""},"PeriodicalIF":33.9000,"publicationDate":"2025-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12943-025-02355-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PARP inhibitors have profoundly changed treatment options for cancers with homologous recombination repair defects, especially those carrying BRCA1/2 mutations. However, the development of resistance to these inhibitors presents a significant clinical challenge as it limits long-term effectiveness. This review provides an overview of the current understanding of resistance mechanisms to PARP inhibitors and explores strategies to overcome these challenges. We discuss the basis of synthetic lethality induced by PARP inhibitors and detail diverse resistance mechanisms affecting PARP inhibitors, including homologous recombination restoration, reduced PARP trapping, enhanced drug efflux, and replication fork stabilization. The review then considers clinical approaches to combat resistance, focusing on combination therapies with immune checkpoint inhibitors, DNA damage response inhibitors, and epigenetic drugs. We also highlight ongoing clinical trials and potential biomarkers for predicting treatment response and resistance. The review concludes by outlining future research directions, emphasizing the need for longitudinal studies, advanced resistance monitoring technologies, and the development of novel combination strategies. By tackling PARP inhibitor resistance, this review seeks to aid in the development of more effective cancer therapies, with the potential to improve outcomes for patients with homologous recombination-deficient tumors.
期刊介绍:
Molecular Cancer is a platform that encourages the exchange of ideas and discoveries in the field of cancer research, particularly focusing on the molecular aspects. Our goal is to facilitate discussions and provide insights into various areas of cancer and related biomedical science. We welcome articles from basic, translational, and clinical research that contribute to the advancement of understanding, prevention, diagnosis, and treatment of cancer.
The scope of topics covered in Molecular Cancer is diverse and inclusive. These include, but are not limited to, cell and tumor biology, angiogenesis, utilizing animal models, understanding metastasis, exploring cancer antigens and the immune response, investigating cellular signaling and molecular biology, examining epidemiology, genetic and molecular profiling of cancer, identifying molecular targets, studying cancer stem cells, exploring DNA damage and repair mechanisms, analyzing cell cycle regulation, investigating apoptosis, exploring molecular virology, and evaluating vaccine and antibody-based cancer therapies.
Molecular Cancer serves as an important platform for sharing exciting discoveries in cancer-related research. It offers an unparalleled opportunity to communicate information to both specialists and the general public. The online presence of Molecular Cancer enables immediate publication of accepted articles and facilitates the presentation of large datasets and supplementary information. This ensures that new research is efficiently and rapidly disseminated to the scientific community.