Yanguang Fu, Panlong Wang, Fukai Peng, Yikai Feng, Mehdi Khaki, Xiaolong Mi
{"title":"Accurate extraction of ocean tidal constituents from coastal satellite altimeter records","authors":"Yanguang Fu, Panlong Wang, Fukai Peng, Yikai Feng, Mehdi Khaki, Xiaolong Mi","doi":"10.3389/fmars.2025.1592765","DOIUrl":null,"url":null,"abstract":"Extracting tidal constituents in coastal regions remains a major challenge due to complex bathymetry, nonlinear shallow-water effects, and land contamination in satellite altimetry measurements. While tide gauges provide high-precision tidal observations, their sparse spatial coverage limits their utility for global coastal studies. Global tidal models, though improved by data assimilation, often suffer from reduced accuracy in coastal zones due to limited spatial resolution and insufficient nearshore constraints. To address these limitations, we utilize the newly released International Altimetry Service 2024 (IAS2024) dataset, which is derived from reprocessed Jason-1/2/3 satellite altimetry data covering the period 2002–2022. We extract ten primary tidal constituents (Q<jats:sub>1</jats:sub>, O<jats:sub>1</jats:sub>, P<jats:sub>1</jats:sub>, K<jats:sub>1</jats:sub>, N<jats:sub>2</jats:sub>, M<jats:sub>2</jats:sub>, S<jats:sub>2</jats:sub>, K<jats:sub>2</jats:sub>, Sa, and Ssa) in global coastal waters using this dataset. The accuracy of IAS2024 tidal extractions is assessed through comparative analysis with four state-of-the-art global tidal models (DTU16, EOT20, FES2014, and FES2022) and 164 tide gauge records. IAS2024 achieves accuracy levels comparable to EOT20 and superior to FES2014 and FES2022, with performance closely matching that of DTU16. For the eight major tidal constituents, the root sum square error of IAS2024 is 11.26 cm, aligning closely with DTU16 (11.23 cm), EOT20 (11.68 cm), and FES2022 (11.26 cm). Relative errors against tide gauge records are 14.16% (O<jats:sub>1</jats:sub>), 16.6% (M<jats:sub>2</jats:sub>), 15.4% (K<jats:sub>1</jats:sub>), and 17.7% (S<jats:sub>2</jats:sub>), demonstrating competitive accuracy. Notably, IAS2024 significantly outperforms traditional models in resolving long-period constituents, with amplitude correlation coefficients of 0.924 for Sa and 0.701 for Ssa, markedly surpassing EOT20 and FES2022. IAS2024 shows strong performance within 10 km of the coast—where conventional altimetry is often unreliable—highlighting its potential for coastal applications. Its enhanced ability to resolve long-period tidal variations makes it particularly valuable for coastal sea level research, tidal energy assessments, and hydrodynamic modeling. These findings underscore the strengths of IAS2024 in nearshore tidal extraction and its importance as a dataset for advancing both global and regional tidal studies.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"11 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1592765","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting tidal constituents in coastal regions remains a major challenge due to complex bathymetry, nonlinear shallow-water effects, and land contamination in satellite altimetry measurements. While tide gauges provide high-precision tidal observations, their sparse spatial coverage limits their utility for global coastal studies. Global tidal models, though improved by data assimilation, often suffer from reduced accuracy in coastal zones due to limited spatial resolution and insufficient nearshore constraints. To address these limitations, we utilize the newly released International Altimetry Service 2024 (IAS2024) dataset, which is derived from reprocessed Jason-1/2/3 satellite altimetry data covering the period 2002–2022. We extract ten primary tidal constituents (Q1, O1, P1, K1, N2, M2, S2, K2, Sa, and Ssa) in global coastal waters using this dataset. The accuracy of IAS2024 tidal extractions is assessed through comparative analysis with four state-of-the-art global tidal models (DTU16, EOT20, FES2014, and FES2022) and 164 tide gauge records. IAS2024 achieves accuracy levels comparable to EOT20 and superior to FES2014 and FES2022, with performance closely matching that of DTU16. For the eight major tidal constituents, the root sum square error of IAS2024 is 11.26 cm, aligning closely with DTU16 (11.23 cm), EOT20 (11.68 cm), and FES2022 (11.26 cm). Relative errors against tide gauge records are 14.16% (O1), 16.6% (M2), 15.4% (K1), and 17.7% (S2), demonstrating competitive accuracy. Notably, IAS2024 significantly outperforms traditional models in resolving long-period constituents, with amplitude correlation coefficients of 0.924 for Sa and 0.701 for Ssa, markedly surpassing EOT20 and FES2022. IAS2024 shows strong performance within 10 km of the coast—where conventional altimetry is often unreliable—highlighting its potential for coastal applications. Its enhanced ability to resolve long-period tidal variations makes it particularly valuable for coastal sea level research, tidal energy assessments, and hydrodynamic modeling. These findings underscore the strengths of IAS2024 in nearshore tidal extraction and its importance as a dataset for advancing both global and regional tidal studies.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.