nf-core/marsseq: systematic preprocessing pipeline for MARS-seq experiments.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-23 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf089
Martin Proks, Jose Alejandro Romero Herrera, Jakub Sedzinski, Joshua M Brickman
{"title":"nf-core/marsseq: systematic preprocessing pipeline for MARS-seq experiments.","authors":"Martin Proks, Jose Alejandro Romero Herrera, Jakub Sedzinski, Joshua M Brickman","doi":"10.1093/bioadv/vbaf089","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Single sequencing technology (scRNA-seq) enables the study of gene regulation at a single cell level. Although many sc-RNA-seq protocols have been established, they have varied in technical complexity, sequencing depth and multimodal capabilities leading to shared limitations in data interpretation due to a lack of standardized preprocessing and consistent data reproducibility. While plate based techniques such as Massively Parallel RNA Single cell Sequencing (MARS-seq2.0) provide reference data on the cells that will be sequenced, the data format limits the possible analysis. Here, we focus on the standardization of MARS-seq analysis and its applicability to RNA velocity.</p><p><strong>Results: </strong>We have taken the original MARS-seq2.0 pipeline and revised it to enable implementation using the nf-core framework. By doing so, we have simplified pipeline execution, enabling a streamlined application with increased transparency and scalability. We have incorporated additional checkpoints to verify experimental metadata and improved the pipeline by implementing a custom workflow for RNA velocity estimation. The pipeline is part of the nf-core bioinformatics community and is freely available at https://github.com/nfcore/marsseq with data analysis at https://github.com/brickmanlab/proks-et-al-2023.</p><p><strong>Availability and implementation: </strong>We introduce an updated preprocessing pipeline for MARS-seq experiments following state-of-the-art guidelines for scientific software development with the added ability to infer RNA velocity.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf089"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Single sequencing technology (scRNA-seq) enables the study of gene regulation at a single cell level. Although many sc-RNA-seq protocols have been established, they have varied in technical complexity, sequencing depth and multimodal capabilities leading to shared limitations in data interpretation due to a lack of standardized preprocessing and consistent data reproducibility. While plate based techniques such as Massively Parallel RNA Single cell Sequencing (MARS-seq2.0) provide reference data on the cells that will be sequenced, the data format limits the possible analysis. Here, we focus on the standardization of MARS-seq analysis and its applicability to RNA velocity.

Results: We have taken the original MARS-seq2.0 pipeline and revised it to enable implementation using the nf-core framework. By doing so, we have simplified pipeline execution, enabling a streamlined application with increased transparency and scalability. We have incorporated additional checkpoints to verify experimental metadata and improved the pipeline by implementing a custom workflow for RNA velocity estimation. The pipeline is part of the nf-core bioinformatics community and is freely available at https://github.com/nfcore/marsseq with data analysis at https://github.com/brickmanlab/proks-et-al-2023.

Availability and implementation: We introduce an updated preprocessing pipeline for MARS-seq experiments following state-of-the-art guidelines for scientific software development with the added ability to infer RNA velocity.

nf-core/marsseq:用于MARS-seq实验的系统化预处理管道。
动机:单测序技术(scRNA-seq)能够在单细胞水平上研究基因调控。虽然已经建立了许多sc-RNA-seq协议,但由于缺乏标准化的预处理和一致的数据可重复性,它们在技术复杂性、测序深度和多模态能力方面各不相同,导致数据解释方面存在共同的限制。虽然基于板的技术,如大规模平行RNA单细胞测序(MARS-seq2.0)提供了将被测序的细胞的参考数据,但数据格式限制了可能的分析。在这里,我们重点关注MARS-seq分析的标准化及其对RNA速度的适用性。结果:我们采用了原始的MARS-seq2.0管道,并对其进行了修改,使其能够使用nf-core框架实现。通过这样做,我们简化了管道执行,使应用程序具有更高的透明度和可伸缩性。我们加入了额外的检查点来验证实验元数据,并通过实现RNA速度估计的自定义工作流来改进流水线。该管道是nf-core生物信息学社区的一部分,可在https://github.com/nfcore/marsseq免费获得,数据分析可在https://github.com/brickmanlab/proks-et-al-2023.Availability免费获得。我们为MARS-seq实验引入了一个更新的预处理管道,该管道遵循最先进的科学软件开发指南,具有推断RNA速度的附加能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信