AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer.

IF 2.5 Q3 BIOCHEMICAL RESEARCH METHODS
Biology Methods and Protocols Pub Date : 2025-04-26 eCollection Date: 2025-01-01 DOI:10.1093/biomethods/bpaf032
Pegah Khosravi, Shady Saikali, Abolfazl Alipour, Saber Mohammadi, Maxwell Boger, Dalanda M Diallo, Christopher J Smith, Marcio C Moschovas, Iman Hajirasouliha, Andrew J Hung, Srirama S Venkataraman, Vipul Patel
{"title":"AutoRadAI: a versatile artificial intelligence framework validated for detecting extracapsular extension in prostate cancer.","authors":"Pegah Khosravi, Shady Saikali, Abolfazl Alipour, Saber Mohammadi, Maxwell Boger, Dalanda M Diallo, Christopher J Smith, Marcio C Moschovas, Iman Hajirasouliha, Andrew J Hung, Srirama S Venkataraman, Vipul Patel","doi":"10.1093/biomethods/bpaf032","DOIUrl":null,"url":null,"abstract":"<p><p>Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.</p>","PeriodicalId":36528,"journal":{"name":"Biology Methods and Protocols","volume":"10 1","pages":"bpaf032"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Methods and Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomethods/bpaf032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Preoperative identification of extracapsular extension (ECE) in prostate cancer (PCa) is crucial for effective treatment planning, as ECE presence significantly increases the risk of positive surgical margins and early biochemical recurrence following radical prostatectomy. AutoRadAI, an innovative artificial intelligence (AI) framework, was developed to address this clinical challenge while demonstrating broader potential for diverse medical imaging applications. The framework integrates T2-weighted MRI data with histopathology annotations, leveraging a dual convolutional neural network (multi-CNN) architecture. AutoRadAI comprises two key components: ProSliceFinder, which isolates prostate-relevant MRI slices, and ExCapNet, which evaluates ECE likelihood at the patient level. The system was trained and validated on a dataset of 1001 patients (510 ECE-positive, 491 ECE-negative cases). ProSliceFinder achieved an area under the ROC curve (AUC) of 0.92 (95% confidence interval [CI]: 0.89-0.94) for slice classification, while ExCapNet demonstrated robust performance with an AUC of 0.88 (95% CI: 0.83-0.92) for patient-level ECE detection. Additionally, AutoRadAI's modular design ensures scalability and adaptability for applications beyond ECE detection. Validated through a user-friendly web-based interface for seamless clinical integration, AutoRadAI highlights the potential of AI-driven solutions in precision oncology. This framework improves diagnostic accuracy and streamlines preoperative staging, offering transformative applications in PCa management and beyond.

AutoRadAI:一个多功能的人工智能框架,用于检测前列腺癌的囊外延伸。
前列腺癌(PCa)的囊外延伸(ECE)的术前识别对于有效的治疗计划至关重要,因为ECE的存在显着增加了根治性前列腺切除术后手术边缘阳性和早期生化复发的风险。AutoRadAI是一种创新的人工智能(AI)框架,旨在解决这一临床挑战,同时展示各种医学成像应用的更广泛潜力。该框架利用双卷积神经网络(multi-CNN)架构,将t2加权MRI数据与组织病理学注释集成在一起。AutoRadAI包括两个关键组件:ProSliceFinder(分离前列腺相关MRI切片)和ExCapNet(在患者水平上评估ECE可能性)。该系统在1001例患者(510例ece阳性,491例ece阴性)的数据集上进行了训练和验证。ProSliceFinder在切片分类方面的ROC曲线下面积(AUC)为0.92(95%可信区间[CI]: 0.89-0.94),而ExCapNet在患者水平的ECE检测方面的AUC为0.88 (95% CI: 0.83-0.92)。此外,AutoRadAI的模块化设计确保了ECE检测以外应用的可扩展性和适应性。AutoRadAI通过用户友好的基于网络的界面进行验证,实现了临床无缝集成,突显了人工智能驱动的解决方案在精准肿瘤学领域的潜力。该框架提高了诊断准确性,简化了术前分期,为前列腺癌管理及其他领域提供了变革性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Methods and Protocols
Biology Methods and Protocols Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.80
自引率
2.80%
发文量
28
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信