Dun Pan, Jinfeng Hu, Guo Li, Xuming Gao, Jie Wang, Leisi Jiang, Hong Lin, Yulin Chen, Yanheng Chen, Yiran Zheng, Junjin Lin, Min Zheng, Hui Chen, Lin-Feng Chen, Xiangming Hu
{"title":"BRD4 regulates PAI-1 expression in tumor-associated macrophages to drive chemoresistance in colorectal cancer.","authors":"Dun Pan, Jinfeng Hu, Guo Li, Xuming Gao, Jie Wang, Leisi Jiang, Hong Lin, Yulin Chen, Yanheng Chen, Yiran Zheng, Junjin Lin, Min Zheng, Hui Chen, Lin-Feng Chen, Xiangming Hu","doi":"10.1038/s41388-025-03453-6","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor-associated macrophages (TAMs) in the tumor microenvironment play a key role in drug resistance, but the mechanisms underlying TAM polarization and its role in drug resistance remain unclear. Here, we identified BRD4 as a critical factor in TAM polarization and drug resistance in colorectal cancer (CRC). BRD4 deficiency in macrophages impaired M2-like TAM polarization, and tumors from myeloid-lineage specific Brd4 conditional knockout (Brd4-CKO) mice displayed a reduction in infiltrating M2-like TAMs and an enhanced anti-tumor microenvironment. Colon cancer cells treated with conditioned medium from polarized Brd4-deficient TAMs, as well as tumors in Brd4-CKO mice, were more sensitive to oxaliplatin. RNA-seq and cytokine microarray analysis revealed that mRNA and protein levels of PAI-1 were significantly decreased in Brd4-deficient polarized TAMs. BRD4 was recruited to the promoter of Serpine1, promoting SMAD-dependent PAI-1 expression. Supplementing Brd4-deficient TAMs with recombinant PAI-1 hampered the sensitivity of colon cancer cells to oxaliplatin. Moreover, PAI-1 inhibitor and oxaliplatin synergistically suppressed the growth of colon tumors. Clinically, the expression levels of BRD4 in TAMs and PAI-1 in tumors were elevated in CRC patients with chemoresistance, correlating with shorter recurrence-free survival. Collectively, our findings uncover a novel role for BRD4 in TAM polarization and drug resistance via PAI-1 upregulation, suggesting the BRD4/PAI-1 axis as a potential prognostic marker and therapeutic target in CRC.</p>","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41388-025-03453-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor-associated macrophages (TAMs) in the tumor microenvironment play a key role in drug resistance, but the mechanisms underlying TAM polarization and its role in drug resistance remain unclear. Here, we identified BRD4 as a critical factor in TAM polarization and drug resistance in colorectal cancer (CRC). BRD4 deficiency in macrophages impaired M2-like TAM polarization, and tumors from myeloid-lineage specific Brd4 conditional knockout (Brd4-CKO) mice displayed a reduction in infiltrating M2-like TAMs and an enhanced anti-tumor microenvironment. Colon cancer cells treated with conditioned medium from polarized Brd4-deficient TAMs, as well as tumors in Brd4-CKO mice, were more sensitive to oxaliplatin. RNA-seq and cytokine microarray analysis revealed that mRNA and protein levels of PAI-1 were significantly decreased in Brd4-deficient polarized TAMs. BRD4 was recruited to the promoter of Serpine1, promoting SMAD-dependent PAI-1 expression. Supplementing Brd4-deficient TAMs with recombinant PAI-1 hampered the sensitivity of colon cancer cells to oxaliplatin. Moreover, PAI-1 inhibitor and oxaliplatin synergistically suppressed the growth of colon tumors. Clinically, the expression levels of BRD4 in TAMs and PAI-1 in tumors were elevated in CRC patients with chemoresistance, correlating with shorter recurrence-free survival. Collectively, our findings uncover a novel role for BRD4 in TAM polarization and drug resistance via PAI-1 upregulation, suggesting the BRD4/PAI-1 axis as a potential prognostic marker and therapeutic target in CRC.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.