Saranya C. Reghupaty , Laetitia Coassolo , Meng Zhao , Ramya Lakshmi Narasimhan , Aayan Patel , Jameel Lone , Ewa Bielczyk-Maczynska , Niels B. Danneskiold-Samsoee , Taylor Brown , Zewen Jiang , Veronica L. Li , Katrin J. Svensson
{"title":"Genetic depletion of adipose-derived Isthmin-1 causes hepatic steatosis","authors":"Saranya C. Reghupaty , Laetitia Coassolo , Meng Zhao , Ramya Lakshmi Narasimhan , Aayan Patel , Jameel Lone , Ewa Bielczyk-Maczynska , Niels B. Danneskiold-Samsoee , Taylor Brown , Zewen Jiang , Veronica L. Li , Katrin J. Svensson","doi":"10.1016/j.molmet.2025.102172","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>Adipose tissue plays a critical role in obesity, as its dysfunction can impair lipid homeostasis and result in lipid overflow and ectopic lipid deposition in the liver. We previously demonstrated that Isthmin-1 (Ism1) regulates glucose uptake into the adipose tissue and suppresses hepatic steatosis, but the role of adipose-derived Ism1 is unknown. Here, we investigate the role of adipose-derived Ism1 in metabolic health and its impact on hepatic steatosis and lipid metabolism.</div></div><div><h3>Methods</h3><div>In this study, we employed both a genetic knockout approach, selectively deleting Ism1 in adipose tissue of mice (AdipoQ-Ism1-KO), and a pharmacological approach by administering recombinant Ism1 protein to mice. These mice were subjected to a high fat-high fructose diet to simulate conditions that promote Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD).</div></div><div><h3>Results</h3><div>AdipoQ-Ism1-KO are of normal weight, but prone to severe hepatic steatosis in response to high fat-high fructose feeding. Lipidomic profiling through untargeted analyses in both gain-of-function and loss-of-function models was used to assess changes in hepatic lipid homeostasis. These results provide <em>in vivo</em> genetic support for the role of Ism1 as a regulator of the adipose–hepatic axis.</div></div><div><h3>Conclusions</h3><div>Collectively, these data demonstrate that loss of adipose-derived Ism1 disrupts lipid homeostasis and accelerates the development of hepatic steatosis. This study provides a genetic basis for Ism1's involvement in metabolic regulation, suggesting a potential therapeutic target for treating metabolic disorders.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"98 ","pages":"Article 102172"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000791","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Adipose tissue plays a critical role in obesity, as its dysfunction can impair lipid homeostasis and result in lipid overflow and ectopic lipid deposition in the liver. We previously demonstrated that Isthmin-1 (Ism1) regulates glucose uptake into the adipose tissue and suppresses hepatic steatosis, but the role of adipose-derived Ism1 is unknown. Here, we investigate the role of adipose-derived Ism1 in metabolic health and its impact on hepatic steatosis and lipid metabolism.
Methods
In this study, we employed both a genetic knockout approach, selectively deleting Ism1 in adipose tissue of mice (AdipoQ-Ism1-KO), and a pharmacological approach by administering recombinant Ism1 protein to mice. These mice were subjected to a high fat-high fructose diet to simulate conditions that promote Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD).
Results
AdipoQ-Ism1-KO are of normal weight, but prone to severe hepatic steatosis in response to high fat-high fructose feeding. Lipidomic profiling through untargeted analyses in both gain-of-function and loss-of-function models was used to assess changes in hepatic lipid homeostasis. These results provide in vivo genetic support for the role of Ism1 as a regulator of the adipose–hepatic axis.
Conclusions
Collectively, these data demonstrate that loss of adipose-derived Ism1 disrupts lipid homeostasis and accelerates the development of hepatic steatosis. This study provides a genetic basis for Ism1's involvement in metabolic regulation, suggesting a potential therapeutic target for treating metabolic disorders.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.