Ying Xu, Jun Li, Zihao Wang, Rongrong Lu, Yingying Liu, Min Wang, Hao Li, Rui Zhao, Weijun Feng
{"title":"Ablation of dysmorphic neurons is a safe and effective treatment for focal cortical dysplasia II.","authors":"Ying Xu, Jun Li, Zihao Wang, Rongrong Lu, Yingying Liu, Min Wang, Hao Li, Rui Zhao, Weijun Feng","doi":"10.1016/j.ymthe.2025.05.023","DOIUrl":null,"url":null,"abstract":"<p><p>Focal cortical dysplasia type II (FCDII) is a leading cause of refractory epilepsy in children, yet treatment options remain limited. The most frequent genetic cause of FCDII is mosaic and somatic variants in genes of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway, leading to hyperactivation of mTOR signaling. The presence of dysmorphic neurons (DNs) resulting from hyperactive mTOR signaling is critical for the development of epilepsy in FCDII. One critical therapeutic challenge and opportunity for FCDII is to selectively eliminate DNs. Here, we developed two strategies to specifically ablate DNs in FCDII mouse models, and the results demonstrate that DN ablation is sufficient to both prevent and eliminate epilepsy in mice. Moreover, the associated neurobehavioral abnormalities were also reversed following treatment. Therefore, our study provides proof-of-concept evidence that DN ablation is a highly promising approach for curing FCDII in the future.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.05.023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Focal cortical dysplasia type II (FCDII) is a leading cause of refractory epilepsy in children, yet treatment options remain limited. The most frequent genetic cause of FCDII is mosaic and somatic variants in genes of the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway, leading to hyperactivation of mTOR signaling. The presence of dysmorphic neurons (DNs) resulting from hyperactive mTOR signaling is critical for the development of epilepsy in FCDII. One critical therapeutic challenge and opportunity for FCDII is to selectively eliminate DNs. Here, we developed two strategies to specifically ablate DNs in FCDII mouse models, and the results demonstrate that DN ablation is sufficient to both prevent and eliminate epilepsy in mice. Moreover, the associated neurobehavioral abnormalities were also reversed following treatment. Therefore, our study provides proof-of-concept evidence that DN ablation is a highly promising approach for curing FCDII in the future.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.