Therapeutic applications of a novel humanized monoclonal antibody targeting chemokine receptor CCR9 in pancreatic cancer.

IF 4.5 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Hannah G McDonald, Anna M Reagan, Charles J Bailey, Mei Gao, Muqiang Gao, Angelica L Solomon, Michael J Cavnar, Prakash K Pandalai, Mautin T Barry-Hundeyin, Megan M Harper, Justin A Rueckert, Ángela Turrero, Araceli Tobio, Anxo Vidal, Daniel Roca-Lema, Elia Álvarez-Coiradas, Pablo Garrido, Laureano Simón, Joseph Kim
{"title":"Therapeutic applications of a novel humanized monoclonal antibody targeting chemokine receptor CCR9 in pancreatic cancer.","authors":"Hannah G McDonald, Anna M Reagan, Charles J Bailey, Mei Gao, Muqiang Gao, Angelica L Solomon, Michael J Cavnar, Prakash K Pandalai, Mautin T Barry-Hundeyin, Megan M Harper, Justin A Rueckert, Ángela Turrero, Araceli Tobio, Anxo Vidal, Daniel Roca-Lema, Elia Álvarez-Coiradas, Pablo Garrido, Laureano Simón, Joseph Kim","doi":"10.1002/1878-0261.70062","DOIUrl":null,"url":null,"abstract":"<p><p>The relative failure of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) despite having a dense, immunosuppressive tumor microenvironment highlights the need to target alternate/escape pathways. We have previously examined C-C chemokine receptor type 9 (CCR9) as a candidate immune checkpoint and developed a targeted, humanized monoclonal antibody (SRB2). Cytotoxicity of SRB2 was evaluated in vitro and in vivo. CCR9 expression on PDAC cells/tissues, immune components of patient-derived organoids (PDOs), and antibody-dependent cell-mediated cytotoxicity were examined. In PANC-1 and MIA PaCa-2 cell lines, we demonstrated highest CCR9 expression; however, no direct cytotoxic effect was observed with SRB2 treatment. In PANC-1 cells, NK cell-mediated cytotoxicity was promoted by SRB2. Dose-dependent SRB2 cytotoxicity was observed in PDAC PDOs. In patient-derived xenograft mouse models, cytotoxicity of SRB2 monotherapy and in combination with oxaliplatin was also shown. In humanized immune-competent mouse models, SRB2 efficacy was similar to other drugs, but two mice in this cohort had complete tumor regression. Our current studies suggest that therapeutic targeting of CCR9 may improve PDAC outcomes, and additional studies are underway to evaluate SRB2 for clinical use.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.70062","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

The relative failure of immune checkpoint inhibitors in pancreatic ductal adenocarcinoma (PDAC) despite having a dense, immunosuppressive tumor microenvironment highlights the need to target alternate/escape pathways. We have previously examined C-C chemokine receptor type 9 (CCR9) as a candidate immune checkpoint and developed a targeted, humanized monoclonal antibody (SRB2). Cytotoxicity of SRB2 was evaluated in vitro and in vivo. CCR9 expression on PDAC cells/tissues, immune components of patient-derived organoids (PDOs), and antibody-dependent cell-mediated cytotoxicity were examined. In PANC-1 and MIA PaCa-2 cell lines, we demonstrated highest CCR9 expression; however, no direct cytotoxic effect was observed with SRB2 treatment. In PANC-1 cells, NK cell-mediated cytotoxicity was promoted by SRB2. Dose-dependent SRB2 cytotoxicity was observed in PDAC PDOs. In patient-derived xenograft mouse models, cytotoxicity of SRB2 monotherapy and in combination with oxaliplatin was also shown. In humanized immune-competent mouse models, SRB2 efficacy was similar to other drugs, but two mice in this cohort had complete tumor regression. Our current studies suggest that therapeutic targeting of CCR9 may improve PDAC outcomes, and additional studies are underway to evaluate SRB2 for clinical use.

一种靶向趋化因子受体CCR9的新型人源化单克隆抗体在胰腺癌中的治疗应用。
尽管胰腺导管腺癌(PDAC)具有致密的免疫抑制肿瘤微环境,但免疫检查点抑制剂在PDAC中的相对失败突出了靶向替代/逃逸途径的必要性。我们之前已经研究了C-C趋化因子受体9型(CCR9)作为候选免疫检查点,并开发了一种靶向的人源化单克隆抗体(SRB2)。体外和体内评价SRB2的细胞毒性。研究人员检测了CCR9在PDAC细胞/组织、患者源性类器官(PDOs)免疫成分以及抗体依赖性细胞介导的细胞毒性中的表达。在PANC-1和MIA PaCa-2细胞系中,我们发现CCR9的表达最高;然而,SRB2治疗未观察到直接的细胞毒性作用。在PANC-1细胞中,SRB2可促进NK细胞介导的细胞毒性。在PDAC PDOs中观察到剂量依赖性SRB2细胞毒性。在患者来源的异种移植小鼠模型中,也显示了SRB2单药治疗和与奥沙利铂联合治疗的细胞毒性。在人源化免疫能力小鼠模型中,SRB2的疗效与其他药物相似,但该队列中有两只小鼠的肿瘤完全消退。我们目前的研究表明,靶向治疗CCR9可能会改善PDAC的预后,并且正在进行更多的研究来评估SRB2的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信