{"title":"Combined Topological Data Analysis and Geometric Deep Learning Reveal Niches by the Quantification of Protein Binding Pockets.","authors":"Peiran Jiang, Jose Lugo-Martinez","doi":"10.1089/cmb.2025.0076","DOIUrl":null,"url":null,"abstract":"<p><p>Protein pockets are essential for many proteins to carry out their functions. Locating and measuring protein pockets, as well as studying the anatomy of pockets, helps us further understand protein function. Most research studies focus on learning either local or global information from protein structures. However, there is a lack of studies that leverage the power of integrating both local and global representations of these structures. In this work, we combine topological data analysis (TDA) and geometric deep learning (GDL) to analyze the putative protein pockets of enzymes. TDA captures blueprints of the global topological invariant of protein pockets, whereas GDL decomposes the fingerprints into building blocks of these pockets. This integration of local and global views provides a comprehensive and complementary understanding of the protein structural motifs (<i>niches</i> for short) within protein pockets. We also analyze the distribution of the building blocks making up the pocket and profile the predictive power of coupling local and global representations for the task of discriminating between enzymes and nonenzymes, as well as predicting the enzyme class. We demonstrate that our representation learning framework for macromolecules is particularly useful when the structure is known, and the scenarios heavily rely on local and global information.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2025.0076","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Protein pockets are essential for many proteins to carry out their functions. Locating and measuring protein pockets, as well as studying the anatomy of pockets, helps us further understand protein function. Most research studies focus on learning either local or global information from protein structures. However, there is a lack of studies that leverage the power of integrating both local and global representations of these structures. In this work, we combine topological data analysis (TDA) and geometric deep learning (GDL) to analyze the putative protein pockets of enzymes. TDA captures blueprints of the global topological invariant of protein pockets, whereas GDL decomposes the fingerprints into building blocks of these pockets. This integration of local and global views provides a comprehensive and complementary understanding of the protein structural motifs (niches for short) within protein pockets. We also analyze the distribution of the building blocks making up the pocket and profile the predictive power of coupling local and global representations for the task of discriminating between enzymes and nonenzymes, as well as predicting the enzyme class. We demonstrate that our representation learning framework for macromolecules is particularly useful when the structure is known, and the scenarios heavily rely on local and global information.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases