{"title":"Midnolin inhibits coronavirus proliferation by degrading viral proteins.","authors":"Yahe Wang, Wu Tong, Wenzhen Qin, Xinyu Yang, Hai Yu, Hao Zheng, Wen Zhang, Guangzhi Tong, Chunmei Wang, Ning Kong, Tongling Shan","doi":"10.1128/jvi.00366-25","DOIUrl":null,"url":null,"abstract":"<p><p>Cells utilize proteasomes and selective autophagy to degrade ubiquitin-labeled viral proteins and inhibit viral proliferation. Midnolin, a midbrain nucleolar protein, is reported to use ubiquitin-independent proteasomal degradation to degrade various nuclear proteins including transcription factors encoded by the immediate-early genes. However, it remains unclear whether midnolin can degrade viral protein to hinder viral replication. In this study, midnolin degraded porcine epidemic diarrhea virus (PEDV) S1/S2/M/E proteins to suppress PEDV proliferation. Midnolin has two essential structural domains: the Catch domain and the ubiquitin-like domain. We found that the Catch domain and the ubiquitin-like domain of midnolin concerted to target and degrade PEDV S1/S2/M/E proteins by both the proteasome and selective autophagy. Furthermore, this study indicated that the individual Catch domain of midnolin degraded PEDV S1/S2/M/E proteins through the autophagy pathway, which recruited the E3 ubiquitinating enzyme MARCH8 to ubiquitinate S1/S2/M/E proteins, and that the ubiquitinated proteins were recognized by Tollip and transported to the lysosome for degradation. Collectively, midnolin degraded viral proteins not only through the proteasomal pathway but also revealed a new mechanism of midnolin-mediated virus restriction, where the Catch domain degraded viral proteins using the midnolin (Catch)-MARCH8-Tollip-autophagosome pathway.IMPORTANCEProteasomes and selective autophagy are two ways that inhibit viral proliferation in cells. Midnolin can degrade nuclear proteins. However, whether midnolin can degrade viral protein is unknown. In this study, we found that midnolin degraded porcine epidemic diarrhea virus (PEDV) S1/S2/M/E proteins to suppress PEDV proliferation. During the degradation, two domains of midnolin exerted a vital role. The Catch domain and the ubiquitin-like domain concerted to interact and degrade PEDV S1/S2/M/E proteins through the proteasome pathway. In addition, the individual Catch domain of midnolin degraded PEDV S1/S2/M/E proteins through the autophagy pathway using the midnolin (Catch)-MARCH8-Tollip-autophagosome pathway. Overall, we have discovered a new mechanism of midnolin which acts as a host factor for antiviral function.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0036625"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00366-25","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cells utilize proteasomes and selective autophagy to degrade ubiquitin-labeled viral proteins and inhibit viral proliferation. Midnolin, a midbrain nucleolar protein, is reported to use ubiquitin-independent proteasomal degradation to degrade various nuclear proteins including transcription factors encoded by the immediate-early genes. However, it remains unclear whether midnolin can degrade viral protein to hinder viral replication. In this study, midnolin degraded porcine epidemic diarrhea virus (PEDV) S1/S2/M/E proteins to suppress PEDV proliferation. Midnolin has two essential structural domains: the Catch domain and the ubiquitin-like domain. We found that the Catch domain and the ubiquitin-like domain of midnolin concerted to target and degrade PEDV S1/S2/M/E proteins by both the proteasome and selective autophagy. Furthermore, this study indicated that the individual Catch domain of midnolin degraded PEDV S1/S2/M/E proteins through the autophagy pathway, which recruited the E3 ubiquitinating enzyme MARCH8 to ubiquitinate S1/S2/M/E proteins, and that the ubiquitinated proteins were recognized by Tollip and transported to the lysosome for degradation. Collectively, midnolin degraded viral proteins not only through the proteasomal pathway but also revealed a new mechanism of midnolin-mediated virus restriction, where the Catch domain degraded viral proteins using the midnolin (Catch)-MARCH8-Tollip-autophagosome pathway.IMPORTANCEProteasomes and selective autophagy are two ways that inhibit viral proliferation in cells. Midnolin can degrade nuclear proteins. However, whether midnolin can degrade viral protein is unknown. In this study, we found that midnolin degraded porcine epidemic diarrhea virus (PEDV) S1/S2/M/E proteins to suppress PEDV proliferation. During the degradation, two domains of midnolin exerted a vital role. The Catch domain and the ubiquitin-like domain concerted to interact and degrade PEDV S1/S2/M/E proteins through the proteasome pathway. In addition, the individual Catch domain of midnolin degraded PEDV S1/S2/M/E proteins through the autophagy pathway using the midnolin (Catch)-MARCH8-Tollip-autophagosome pathway. Overall, we have discovered a new mechanism of midnolin which acts as a host factor for antiviral function.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.