BRCA1 preserves genome integrity during the formation of undifferentiated spermatogonia.

IF 6.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
EMBO Reports Pub Date : 2025-08-01 Epub Date: 2025-05-28 DOI:10.1038/s44319-025-00487-5
Peng Li, Licun Song, Longfei Ma, Chunsheng Han, Lejun Li, Lin-Yu Lu, Yidan Liu
{"title":"BRCA1 preserves genome integrity during the formation of undifferentiated spermatogonia.","authors":"Peng Li, Licun Song, Longfei Ma, Chunsheng Han, Lejun Li, Lin-Yu Lu, Yidan Liu","doi":"10.1038/s44319-025-00487-5","DOIUrl":null,"url":null,"abstract":"<p><p>Undifferentiated spermatogonia, which form shortly after birth, consist of spermatogonial stem cells and progenitor spermatogonia that maintain homeostasis. As the origin of spermatogenesis, undifferentiated spermatogonia must preserve genome integrity. Paradoxically, we demonstrate that massive spontaneous DNA damage, potentially generated by formaldehyde, arises during the formation of undifferentiated spermatogonia, posing a significant threat to genome integrity. We further reveal that BRCA1 is essential for the timely repair of this spontaneous DNA damage. BRCA1 loss leads to a dramatic reduction in progenitor spermatogonia and disrupts the formation of undifferentiated spermatogonia. Although spermatogonial stem cells initially undergo hyperproliferation, they are eventually depleted, resulting in the premature exhaustion of undifferentiated spermatogonia. Our study highlights a striking difference in DNA damage sensitivity between the two populations of undifferentiated spermatogonia and underscores the critical role of BRCA1-dependent DNA damage repair in preserving genome integrity during the formation of undifferentiated spermatogonia.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":"3747-3772"},"PeriodicalIF":6.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12332178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00487-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Undifferentiated spermatogonia, which form shortly after birth, consist of spermatogonial stem cells and progenitor spermatogonia that maintain homeostasis. As the origin of spermatogenesis, undifferentiated spermatogonia must preserve genome integrity. Paradoxically, we demonstrate that massive spontaneous DNA damage, potentially generated by formaldehyde, arises during the formation of undifferentiated spermatogonia, posing a significant threat to genome integrity. We further reveal that BRCA1 is essential for the timely repair of this spontaneous DNA damage. BRCA1 loss leads to a dramatic reduction in progenitor spermatogonia and disrupts the formation of undifferentiated spermatogonia. Although spermatogonial stem cells initially undergo hyperproliferation, they are eventually depleted, resulting in the premature exhaustion of undifferentiated spermatogonia. Our study highlights a striking difference in DNA damage sensitivity between the two populations of undifferentiated spermatogonia and underscores the critical role of BRCA1-dependent DNA damage repair in preserving genome integrity during the formation of undifferentiated spermatogonia.

BRCA1在未分化精原细胞形成过程中保持了基因组的完整性。
未分化精原细胞是在出生后不久形成的,由维持体内平衡的精原干细胞和祖精原细胞组成。未分化精原体作为精子发生的起源,必须保持基因组的完整性。矛盾的是,我们证明了大量的自发DNA损伤,可能是由甲醛产生的,在未分化精原细胞的形成过程中出现,对基因组完整性构成重大威胁。我们进一步发现BRCA1对于及时修复这种自发DNA损伤至关重要。BRCA1缺失导致祖精原细胞显著减少,破坏未分化精原细胞的形成。尽管精原干细胞最初经历过度增殖,但它们最终被耗尽,导致未分化的精原细胞过早衰竭。我们的研究强调了两个未分化精原细胞群体之间DNA损伤敏感性的显著差异,并强调了brca1依赖性DNA损伤修复在未分化精原细胞形成过程中保持基因组完整性的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EMBO Reports
EMBO Reports 生物-生化与分子生物学
CiteScore
11.20
自引率
1.30%
发文量
267
审稿时长
1 months
期刊介绍: EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings. The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that: Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels. Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies. Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding. Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts. EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry. 
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信