{"title":"AgRP1 modulates breeding season-dependent feeding behavior in female medaka.","authors":"Yurika Tagui, Shingo Takeda, Hiroyo Waida, Shoichi Kitahara, Tomoki Kimura, Shinji Kanda, Yoshitaka Oka, Yu Hayashi, Chie Umatani","doi":"10.7554/eLife.100996","DOIUrl":null,"url":null,"abstract":"<p><p>Feeding and reproduction are known to be closely correlated with each other, and the seasonal breeders show breeding season-dependent feeding behavior. However, most model animals do not have definite breeding seasonality, and the mechanisms for such feeding behavior remain unclear. Here, we focused on female medaka (<i>Oryzias latipes</i>); they show breeding season-dependent feeding behavior, and their condition of breeding season can be experimentally controlled by day-length. We first demonstrated that, among previously reported feeding-related peptides (neuropeptides involved in feeding), agouti-related peptide 1 (<i>agrp1</i>) and neuropeptide y b (<i>npyb</i>) show higher brain expression under the breeding condition than under the non-breeding one. Combined with analysis of <i>agrp1</i> knockout medaka, we obtained results to suggest that long day-induced sexually mature condition, especially ovarian estrogenic signals, increase the expressions of <i>agrp1</i> in the brain, which results in increased food intake to promote reproduction. Our findings advance the understanding of neural mechanisms of feeding behavior for reproductive success.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.100996","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feeding and reproduction are known to be closely correlated with each other, and the seasonal breeders show breeding season-dependent feeding behavior. However, most model animals do not have definite breeding seasonality, and the mechanisms for such feeding behavior remain unclear. Here, we focused on female medaka (Oryzias latipes); they show breeding season-dependent feeding behavior, and their condition of breeding season can be experimentally controlled by day-length. We first demonstrated that, among previously reported feeding-related peptides (neuropeptides involved in feeding), agouti-related peptide 1 (agrp1) and neuropeptide y b (npyb) show higher brain expression under the breeding condition than under the non-breeding one. Combined with analysis of agrp1 knockout medaka, we obtained results to suggest that long day-induced sexually mature condition, especially ovarian estrogenic signals, increase the expressions of agrp1 in the brain, which results in increased food intake to promote reproduction. Our findings advance the understanding of neural mechanisms of feeding behavior for reproductive success.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.