Revisiting the Multilayer Network Framework for Electrophysiological Networks.

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Brain connectivity Pub Date : 2025-06-01 Epub Date: 2025-05-28 DOI:10.1089/brain.2025.0010
Prejaas K B Tewarie, Steven Laureys, Rikkert Hindriks
{"title":"Revisiting the Multilayer Network Framework for Electrophysiological Networks.","authors":"Prejaas K B Tewarie, Steven Laureys, Rikkert Hindriks","doi":"10.1089/brain.2025.0010","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> The multilayer network framework has emerged as an innovative approach for analyzing electrophysiological networks, providing insights into complex neuronal interactions by integrating connectivity across different frequency bands in electroencephalography (EEG) and magnetoencephalography (MEG) data. <b><i>Current Limitations:</i></b> Traditionally, multilayer networks have treated canonical frequency bands (e.g., delta, theta, alpha, beta, gamma) as distinct layers. Recent findings could raise potential concerns regarding this approach, emphasizing the need to incorporate the distinction between periodic (oscillatory) and aperiodic (broadband) signal components. <b><i>Conceptual Advance:</i></b> Aperiodic signals may reflect excitation-inhibition balance and scale-free dynamics, while periodic signals capture oscillatory rhythms, both contributing uniquely to brain network interactions. A multilayer network framework in the current context could be applicable in the case of genuine coupling between these components, termed \"aperiodic-to-periodic coupling.\" This necessitates novel connectivity metrics and analytical methods that can handle broadband data. Furthermore, challenges remain in decomposing these components in the time domain and developing robust metrics for broadband connectivity that account for signal leakage. <b><i>Outlook:</i></b> Addressing these issues will enhance multilayer frameworks, enabling better insights into brain network integrity, cognitive dysfunction, and neurological conditions.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"189-194"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2025.0010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The multilayer network framework has emerged as an innovative approach for analyzing electrophysiological networks, providing insights into complex neuronal interactions by integrating connectivity across different frequency bands in electroencephalography (EEG) and magnetoencephalography (MEG) data. Current Limitations: Traditionally, multilayer networks have treated canonical frequency bands (e.g., delta, theta, alpha, beta, gamma) as distinct layers. Recent findings could raise potential concerns regarding this approach, emphasizing the need to incorporate the distinction between periodic (oscillatory) and aperiodic (broadband) signal components. Conceptual Advance: Aperiodic signals may reflect excitation-inhibition balance and scale-free dynamics, while periodic signals capture oscillatory rhythms, both contributing uniquely to brain network interactions. A multilayer network framework in the current context could be applicable in the case of genuine coupling between these components, termed "aperiodic-to-periodic coupling." This necessitates novel connectivity metrics and analytical methods that can handle broadband data. Furthermore, challenges remain in decomposing these components in the time domain and developing robust metrics for broadband connectivity that account for signal leakage. Outlook: Addressing these issues will enhance multilayer frameworks, enabling better insights into brain network integrity, cognitive dysfunction, and neurological conditions.

重新审视电生理网络的多层网络框架。
背景:多层网络框架已经成为分析电生理网络的一种创新方法,通过整合脑电图(EEG)和脑磁图(MEG)数据中不同频段的连接,可以深入了解复杂的神经元相互作用。当前限制:传统上,多层网络将标准频带(例如,delta, theta, alpha, beta, gamma)作为不同的层处理。最近的研究结果可能会引起对这种方法的潜在关注,强调需要将周期(振荡)和非周期(宽带)信号成分之间的区别结合起来。概念进展:非周期信号可能反映兴奋-抑制平衡和无标度动态,而周期信号捕捉振荡节奏,两者都对大脑网络相互作用有独特的贡献。当前上下文中的多层网络框架可以适用于这些组件之间的真正耦合,称为“非周期性到周期性耦合”。这就需要能够处理宽带数据的新型连接度量和分析方法。此外,在时域分解这些组件以及开发考虑信号泄漏的宽带连接的稳健指标方面仍然存在挑战。展望:解决这些问题将增强多层框架,使我们能够更好地了解大脑网络完整性、认知功能障碍和神经系统疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain connectivity
Brain connectivity Neuroscience-General Neuroscience
CiteScore
4.80
自引率
0.00%
发文量
80
期刊介绍: Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic. This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信