Jianbo Fu, Vito R T Zanotelli, Cedric Howald, Nylsa Chammartin, Ilya Kolpakov, Ioannis Xenarios, D Sean Froese, Bernd Wollscheid, Patrick G A Pedrioli, Sandra Goetze
{"title":"A Multi-Omics Framework for Decoding Disease Mechanisms: Insights from Methylmalonic Aciduria.","authors":"Jianbo Fu, Vito R T Zanotelli, Cedric Howald, Nylsa Chammartin, Ilya Kolpakov, Ioannis Xenarios, D Sean Froese, Bernd Wollscheid, Patrick G A Pedrioli, Sandra Goetze","doi":"10.1016/j.mcpro.2025.100998","DOIUrl":null,"url":null,"abstract":"<p><p>The diverse perspectives offered by multi-omics data analysis can aid in identifying the most relevant molecular pathways involved in disease processes, and findings in one layer can substantiate findings in other layers of information. Integrating data from multiple omics sources is becoming increasingly important to improve disease diagnosis and treatment, especially for conditions with complex and poorly understood underlying pathomechanisms. Methylmalonic aciduria (MMA), an inherited metabolic disorder, serves as an illustrative example of such a disease with poorly understood pathogenesis for which published multi-omics data are readily available. Re-using these FAIR data, obtained from the multi-omics digitization of 230 MMA patient samples, we pursued advanced data integration and analysis strategies to integrate different levels of biological information, combining genomic, transcriptomic, proteomic, and metabolomic profiling with biochemical and clinical data, with the aim of elucidating molecular perturbations in individuals affected by MMA. The analysis of protein-quantitative trait loci highlighted the importance of glutathione metabolism in the pathogenesis of methylmalonic acidemia (MMA). This finding was supported by correlation network analyses that integrated proteomics and metabolomics data, alongside gene set enrichment and transcription factor analyses based on disease severity from transcriptomic data. The correlation network analysis also revealed that lysosomal function is compromised in MMA patients, which is critical for maintaining metabolic balance. Our research introduces a comprehensive data analysis framework that effectively addresses the challenge of prioritizing disruptions in molecular pathways by accumulating evidence from multiple omics levels.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100998"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100998","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The diverse perspectives offered by multi-omics data analysis can aid in identifying the most relevant molecular pathways involved in disease processes, and findings in one layer can substantiate findings in other layers of information. Integrating data from multiple omics sources is becoming increasingly important to improve disease diagnosis and treatment, especially for conditions with complex and poorly understood underlying pathomechanisms. Methylmalonic aciduria (MMA), an inherited metabolic disorder, serves as an illustrative example of such a disease with poorly understood pathogenesis for which published multi-omics data are readily available. Re-using these FAIR data, obtained from the multi-omics digitization of 230 MMA patient samples, we pursued advanced data integration and analysis strategies to integrate different levels of biological information, combining genomic, transcriptomic, proteomic, and metabolomic profiling with biochemical and clinical data, with the aim of elucidating molecular perturbations in individuals affected by MMA. The analysis of protein-quantitative trait loci highlighted the importance of glutathione metabolism in the pathogenesis of methylmalonic acidemia (MMA). This finding was supported by correlation network analyses that integrated proteomics and metabolomics data, alongside gene set enrichment and transcription factor analyses based on disease severity from transcriptomic data. The correlation network analysis also revealed that lysosomal function is compromised in MMA patients, which is critical for maintaining metabolic balance. Our research introduces a comprehensive data analysis framework that effectively addresses the challenge of prioritizing disruptions in molecular pathways by accumulating evidence from multiple omics levels.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes