Lauren Theunissen, Thomas Mortier, Yvan Saeys, Willem Waegeman
{"title":"Evaluation of out-of-distribution detection methods for data shifts in single-cell transcriptomics.","authors":"Lauren Theunissen, Thomas Mortier, Yvan Saeys, Willem Waegeman","doi":"10.1093/bib/bbaf239","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12121363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Automatic cell-type annotation methods assign cell-type labels to new, unlabeled datasets by leveraging relationships from a reference RNA-seq atlas. However, new datasets may include labels absent from the reference dataset or exhibit feature distributions that diverge from it. These scenarios can significantly affect the reliability of cell type predictions, a factor often overlooked in current automatic annotation methods. The field of out-of-distribution detection (OOD), primarily focused on computer vision, addresses the identification of instances that differ from the training distribution. Therefore, the implementation of OOD methods in the context of novel cell type annotation and data shift detection for single-cell transcriptomics may enhance annotation accuracy and trustworthiness. We evaluate six OOD detection methods: LogitNorm, MC dropout, Deep Ensembles, Energy-based OOD, Deep NN, and Posterior networks, for their annotation and OOD detection performance in both synthetical and real-life application settings. We show that OOD detection methods can accurately identify novel cell types and demonstrate potential to detect significant data shifts in non-integrated datasets. Moreover, we find that integration of the OOD datasets does not interfere with OOD detection of novel cell types.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.